

Results from AMS-02 on the International Space Station

June 9th, 2015 WIN2015, Heidelberg

Iris Gebauer for the AMS collaboration

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

www.kit.edu

AMS-02: THE ALPHA MAGNETIC SPECTROMETER 02

- Volume 64 m³, height 4 m
- Weight 8500 kg
- **Power** 2500 W
- Data downlink 9 Mbps (minimum)
- Magnetic field 0.15 T (400 x Earth, PAMELA: 0.4 T, but H=44.5 cm)
- Launch May 16th, 2011 (Endeavour)
- Data taking as of May 19th, 2011
- Construction 1999-2010 (>3 PhD generations)
- **Mission duration:** until the end of ISS operation (currently 2024)

Cosmic ray spectra up to TeV energies Indirect Dark Matter search: e^+ , \overline{p} , χ , ... Direct search for primordial antimatter: He, \overline{C} , Solar physics effects over 11 years solar cycle Gamma ray physics (skymaps, photon spectra)

TODAY:

Proton flux measurement Positron fraction and electron and positron fluxes Antiproton/proton ratio Nuclei

AMS-02 RESULTS

June 9th, 2015, WIN2015 Heidelberg 6

PROTON FLUX MEASUREMENT

PRL 114, 171103 (2015)

ട്ട

Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station

The isotropic proton flux Φ_i for the ith rigidity bin (R_i, R_i+ Δ R_i) is

$$\Phi_i = \frac{N_i}{A_i \epsilon_i T_i \Delta R_i}$$

 N_{i} is the number of events, 300 million proton events have been selected; A_{i} is the effective acceptance;

 ϵ_i is the trigger efficiency;

 T_{i} is the measurement time (which depends in geomagnetic cutoff, orbit and operations).

To match the statistics, extensive systematic error studies were made.

AMS-02 PROTON FLUX

AMS-02 PROTON FLUX

June 9th, 2015, WIN2015 Heidelberg

Iris Gebauer Institut für Experimentelle Kernphysik

AMS-02 PROTON FLUX FIT TO TWO POWER LAWS:

 R^{γ} , $R^{\gamma + \Delta \gamma}$ with a characteristic transition rigidity R_{0} and smoothness s.

PHYSICS OF 11 MILLION e⁺, e⁻ EVENTS

Measuring electrons and positrons TRD (transition radiation) to identify e[±]

> ECAL measures E Tracker measures p e[±]: E=p proton: E<p

ECAL (shower shape) to separate e[±] from protons

AMS-02 POSITRON FRACTION MEASUREMENT

June 9th, 2015, WIN2015 Heidelberg

Iris Gebauer Institut für Experimentelle Kernphysik

IS THERE A MAXIMUM IN THE POSITRON FRACTION?

There is an energy beyond which it ceases to increase

 Above 200 GeV the fraction no longer exhibits an increase with energy

common source

COMBINED (e⁺ + e⁻) FLUX: EVENT SELECTION

AMS-02 e⁺+e⁻ FLUX

AMS-02 e⁺+e⁻ FLUX

$\gamma = d \log (\Phi) / d \log (E)$

AMS-02 e⁺+e⁻ FLUX

$\Phi(e^+ + e^-) = C E^{\gamma}$ $\gamma = -3.170 \pm 0.008 \text{ (stat + syst.)} \pm 0.008 \text{ (energy scale)}$ E > 30 GeV

The flux is consistent with a single power law above 30 GeV.

WHAT DO WE LEARN FROM THE NEW DATA?

Models based on 15 mio. DRAGON runs.

B/C fixed \rightarrow cosmic ray interaction rate fixed \rightarrow positrons fixed

WHAT DO WE LEARN FROM THE NEW DATA?

AMS-02 NUCLEI MEASUREMENTS

June 9th, 2015, WIN2015 Heidelberg 23

AMS-02 is operating stable on the ISS since May 2011.

The latest AMS measurements of the positron fraction, the antiproton/proton ratio, the behavior of the fluxes of electrons, positrons, protons, helium, and other nuclei provide precise and unexpected information.

The accuracy and characteristics of the data, require a comprehensive model to ascertain if their origin is from dark matter, astrophysical sources, acceleration mechanisms or a combination.

OPERATING AMS-02 ON THE ISS

POCC: PAYPLOAD OPERATIONS CONTROL CENTER

June 9th, 2015, WIN2015 Heidelberg 26

POCC Payload Operations Control Center

Monitoring + Commanding

Communication with NASA

4 positions monitoring 11 Subdetectors (24/7)

LEAD position monitoring the entire system

$\textbf{AMS-02} \leftrightarrow \textbf{GROUND}$

27

VERIFICATION OF POSITRON FRACTION

Using two independent samples: Positron fraction analysis with TRD only

Good agreement between TRD only and full sample.

ELECTRON AND POSITRON FLUXES

Phys. Rev. Lett. 113, 121102 (Sept. 2014)

SYSTEMATIC ERRORS ON THE PROTON FLUX

- σ_{tria} : trigger efficiency
- σ_{acc} : I) the acceptance and event selection
 - II) background contamination
 - III) geomagnetic cutoff
- σ_{unf} : I) unfolding
 - II) rigidity resolution function
- σ_{scale} : the absolute rigidity scale

Rigidity [GV]	Φ	$\sigma_{\rm stat.}$	$\sigma_{\rm trig.}$	$\sigma_{\rm acc.}$	$\sigma_{\rm unf.}$	$\sigma_{\rm scale}$	$\sigma_{\rm syst.}$
100 - 108	(4.085	0.007	0.006	0.040	0.035	0.022	$0.058) \times 10^{-2}$
108 - 116	(3.294	0.007	0.005	0.033	0.028	0.018	$0.047) \times 10^{-2}$
116 - 125	(2.698)	0.006	0.004	0.027	0.023	0.016	$0.039) \times 10^{-2}$
125 - 135	(2.174	0.005	0.004	0.022	0.019	0.013	$0.032) \times 10^{-2}$
135 - 147	(1.727)	0.004	0.003	0.018	0.016	0.011	$0.026) \times 10^{-2}$
147 - 160	(1.358)	0.003	0.003	0.014	0.013	0.009	$0.021) \times 10^{-2}$
160 - 175	(1.065)	0.003	0.002	0.011	0.010	0.007	$0.017) \times 10^{-2}$
175 - 192	(8.212	0.023	0.017	0.087	0.079	0.059	$0.133) \times 10^{-3}$
192 - 211	(6.299)	0.019	0.014	0.068	0.062	0.047	$0.104) \times 10^{-3}$
211 - 233	(4.793)	0.015	0.011	0.053	0.049	0.039	$0.083) \times 10^{-3}$
233 - 259	(3.605)	0.012	0.009	0.040	0.039	0.031	$0.065) \times 10^{-3}$
259 - 291	(2.647)	0.009	0.007	0.030	0.029	0.024	$0.049) \times 10^{-3}$
291 - 330	(1.884)	0.007	0.006	0.022	0.022	0.019	$0.037) \times 10^{-3}$

AMS-02 PROTON FLUX SPECTRAL INDEX VARIATION:

Model independent measurement of spectral index

TRANSPORT MODELS IN THE AMS-02 ERA

Iris Gebauer Institut für Experimentelle Kernphysik

June 9th, 2015, WIN2015 Heidelberg 36

WHAT DO WE LEARN FROM THE NEW DATA?

Models based on 15 mio. DRAGON runs.

June 9th, 2015, WIN2015 Heidelberg 38

Iris Gebauer Institut für Experimentelle Kernphysik

WHAT DO WE LEARN FROM THE NEW DATA?

Models based on 15 mio. DRAGON runs.

June 9th, 2015, WIN2015 Heidelberg 39

Iris Gebauer Institut für Experimentelle Kernphysik

AMS-02 COLLABORATION

CHARGED COSMIC RAYS

