9 June 2015 WIN 2015 Heidelberg

Dark Matter Indirect Detection:

antiprotons

Marco Cirelli (CNRS IPhT Saclay)

9 June 2015 WIN 2015 Heidelberg

Dark Matter Indirect Detection:

antiprotons

Marco Cirelli (CNRS IPhT Saclay)

DM detection

direct detection

Xenon, CDMS, Edelweiss... (CoGeNT, Dama/Libra...)

production at colliders

Y from annihil in galactic center or halo and from synchrotron emission Fermi, ICT, radio telescopes...

\indirect - e

from annihil in galactic halo or center PAMELA, Fermi, HESS, AMS, balloons... from annihil in galactic halo or center \bar{l} from annihil in galactic halo or center GAPS $\bar{\nu}$ from annihil in massive bodies SK, Icecube, Km3Net

DM detection

direct detection

production at colliders

 $\begin{array}{c} \gamma \ \text{from annihil in galactic center or halo} \\ \text{and from synchrotron emission} \\ \text{Fermi, ICT, radio telescopes...} \\ e^{+} \text{from annihil in galactic halo or center} \\ PAMELA, Fermi, HESS, AMS, balloons...} \\ \hline p \ \text{from annihil in galactic halo or center} \\ \hline d \ \text{from annihil in galactic halo or center} \\ \text{GAPS} \\ \nu, \overline{\nu} \ \text{from annihil in massive bodies} \\ \text{SK, Icecube, Km3Net} \end{array}$

DM detection

direct detection

production at colliders

from annihil in galactic center or halo and from synchrotron emission Fermi, ICT

\indirect e

from annihil in galactic halo or center PAMELA, Fermi, HESS, AMS, balloons... from annihil in galactic halo or center

from annihil in galactic halo or center

 \mathcal{V} from annihil in massive bodies SK, Icecube

Predicting antiprotons from DM

	Galactic	Bulge	Norma Arm	
Scutum	Arm			Crux Arm
Outer Arm				Carina Arm
Perseus Arm			-f	
	Sagittarius Arm *		Sun Local	Anm .

Indirect Detection: basics $M \longrightarrow W^{-}, Z, b, \tau^{-}, t, h \dots \rightsquigarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$ $M \longrightarrow W^{+}, Z, \overline{b}, \tau^{+}, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

Indirect Detection: basics

DM DM

 $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

primary channels

 $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

Indirect Detection: basics

DM^{\bullet} primary

 $W^-, Z, b, \tau^-, t, h \dots \longrightarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

channels

decay $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \longrightarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

thickness diffusion { diff. reacc. p index convection solar mod.

	KRA	KOL	CON	THK	THN	THN2	THN3
L [kpc]	4	4	4	10	0.5	2	3
$D_0 \ [10^{28} \ { m cm}^2 { m s}^{-1}]$	2.64	4.46	0.97	4.75	0.31	1.35	1.98
δ	0.50	0.33	0.6	0.50	0.50	0.50	0.50
η	-0.39	1	1	-0.15	-0.27	-0.27	-0.27
$v_{\rm A} [{\rm km s^{-1}}]$	14.2	36	38.1	14.1	11.6	11.6	11.6
7	2.35	1.78/2.45	1.62/2.35	2.35	2.35	2.35	2.35
$dv_{\rm c}/dz [{\rm kms^{-1}kpc^{-1}}]$	0	0	50	0	0	0	0
ϕ_F^p [GV]	0.650	0.335	0.282	0.687	0.704	0.626	0.623
$\chi^2_{\rm min}/{\rm dof} \ (p \ {\rm in} \ [25])$	0.462	0.761	1.602	0.516	0.639	0.343	0.339

Cirelli, Gaggero, Giesen, Taoso, Urbano 1407.2173 cfr. Evoli, Cholis, Grasso, Maccione, Ullio, 1108.0664

	Elect	rons or positrons	Ant	iprotons (and an	6.5	
Model	δ	$\mathcal{K}_0 \; [\mathrm{kpc}^2/\mathrm{Myr}]$	δ	$\mathcal{K}_0 \; [\mathrm{kpc}^2/\mathrm{Myr}]$	$V_{\rm conv} [{\rm km/s}]$	$L [\mathrm{kpc}]$
MIN	0.55	0.00595	0.85	0.0016	13.5	1
MED	0.70	0.0112	0.70	0.0112	12	4
MAX	0.46	0.0765	0.46	0.0765	5	15

Donato et al., 2003+

0.2

0.1

PPPC4DMID previous release

1.0

Energy [GeV]

0.5

5.0

10.0

2.0

Boudaud, Cirelli, Giesen, Salati, 1412.5696

Propagated fluxes

Antiprotons

Cirelli, Panci, Sala et al., 1012.4515 Boudaud, Cirelli, Giesen, Salati 1412.5696

Varying prop parameters

Varying halo profile

Predicting antiprotons from astrophysics

- primary p (and He)
- spallation cross-sections $\sigma_{pH \to \bar{p}X}, \sigma_{pHe \to \bar{p}X}, \sigma_{HeH \to \bar{p}X}, \sigma_{HeHe \to \bar{p}X}$
- propagation
- solar modulation

- propagation
- solar modulation

Indirect Detection Background computations for antiprotons: Uncertainties:

Background computations for antiprotons:

Antiproton data vis-à-vis the background:

No evident excess

Antiproton data vis-à-vis the background:

No evident excess

Some preference for flatness

Constraints

A compelling case for annihilating DM

Using events with accurate directional reconstruction

Best fit: ~35 GeV, quarks, ~thermal ov

As found in previous studies [8, 9], the inclusion of the dark matter template dramatically improves the quality of the fit to the *Fermi* data. For the best-fit spectrum and halo profile, we find that the inclusion of the dark matter template improves the formal fit by $\Delta \chi^2 \simeq 1672$, corresponding to a statistical preference greater than 40σ .

Fermi-LAT excess

Cirelli, Gaggero, Giesen, Taoso, Urbano 1407.2173

Antiproton constraints may be very relevant! But <u>not</u> robust.

<u>Assumption</u>: fixed solar modulation <u>Result</u>: hooperon excluded (except unrealistic THN)

Fermi-LAT excess

Cirelli, Gaggero, Giesen, Taoso, Urbano 1407.2173

Antiproton constraints may be very relevant! But <u>not</u> robust.

<u>Assumption</u>: flexible solar modulation <u>Result</u>: hooperon may be excluded or not

Fermi-LAT excess

Cirelli, Gaggero, Giesen, Taoso, Urbano 1407.2173

Antiproton constraints may be very relevant! But <u>not</u> robust.

<u>Assumption</u>: conservative solar modulation <u>Result</u>: hooperon probably reallowed (except THK models)

Fermi-LAT excess

Cirelli, Gaggero, Giesen, Taoso, Urbano 1407.2173

Antiproton constraints may be very relevant! But <u>not</u> robust.

<u>Assumption</u>: conservative solar modulation <u>Result</u>: hooperon probably reallowed (except THK models)

> NB Conclusion <u>differs</u> from Bringmann, Vollmann, Weniger 1406.6027 which finds exclusion / strong tension

GC GeV gamma excess?

[=1.04, 100% bit

Antiproton constraints compared:

Cirelli, Gaggero, Giesen, Taoso, Urbano 1407.2173

May be very relevant! But <u>not</u> robust. Bringmann, Vollmann, Weniger 1406.6027

m, [GeV]

'Rule out' or 'considerable tension'.

Hooper, Linden, Mertsch 1410.1527

50

'Significantly less stringent'.

How come?!?

GC GeV gamma excess?

Antiproton constraints compared:

May be very relevant! But not robust.

'Rule out' or 'considerable tension'. 'Significantly less stringent'.

How come?!? The devil is in the (CR propagation) details: solar modulation, convection, primary injection spectrum, tertiaries...

Model independent boundsBased on AMS-02 \bar{p}/p data (april 2015)

'AMS-02 days' at CERN, 15-17 april 2015 talks by S.Ting, A. Kounine etc

Model independent boundsBased on AMS-02 \bar{p}/p data (april 2015)(AMS-02 days' at 15-17 april 2015)

Annihilation constraints from \overline{p} / p 10⁻²² cross section $\langle \sigma v \rangle [cm^3/sec]$ 10⁻²⁴ 10⁻²⁶ Einasto MED $\chi \overline{\chi} \rightarrow b\overline{b}$ $\chi \overline{\chi} \to W^+ W^ \chi \overline{\chi} \to \gamma \gamma$ 10⁻²⁸ 1000 10000 100 10 DM mass $m_{\rm DM}$ [GeV]

'AMS-02 days' at CERN, 15-17 april 2015 talks by S.Ting, A. Kounine etc

Annihilation constraints from \overline{p} / p 10⁻²² cross section $\langle \sigma v \rangle [cm^3/sec]$ 10^{-24} 10⁻²⁶ Einasto MED $\chi \overline{\chi} \to b \overline{b}$ $\chi \overline{\chi} \to W^+ W^ \chi \overline{\chi} \to \gamma \gamma$ 10⁻²⁸ 100 1000 10000 10 DM mass $m_{\rm DM}$ [GeV]

 $m_{\rm DM} > 150~{
m GeV}$ (bb Ein MED)

talks by S. Ting, A. Kounine etc

bounds on leptonic channels

'AMS-02 days' at CERN, 15-17 april 2015 talks by S.Ting, A. Kounine etc

Model independent boundsBased on AMS-02 \bar{p}/p data (april 2015)AMS-02 days' at

'AMS-02 days' at CERN, 15-17 april 2015 talks by S.Ting, A. Kounine etc

'AMS-02 days' at CERN, 15-17 april 2015 talks by S.Ting, A. Kounine etc

DM not seen yet (Dammin)

Constraints are stronger and stronger

Antiproton constraints are interesting and competitive with (e.g.) gamma ray ones. But they have important uncertainties.

Giesen et al.

504.04276

Back up slides

DM exists

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

^{&#}x27;precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

Some of us believe in the WIMP miracle.

- weak-scale mass (10 GeV 1 TeV)
- weak interactions $\sigma v = 3 \cdot 10^{-26} \text{cm}^3/\text{sec}$

- give automatically correct abundance

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

DM need not be absolutely stable, just $\tau_{\rm DM}\gtrsim \tau_{\rm universe}\simeq 4.3 \ 10^{17} {
m sec}$.

What sets the overall expected flux? ${
m flux} \propto n^2 \, \sigma_{
m annihilation}$

What sets the overall expected flux? flux $\propto n^2 \sigma_{\rm annihilation}$ astro& particle

What sets the overall expected flux? $\begin{aligned} & \text{flux} \propto n^2 \\ & \text{astro&} \\ & \text{cosmo} \end{aligned} \sigma_{\text{annihilation}} \\ & \sigma_{v} = 3 \cdot 10^{-26} \text{cm}^3/\text{sec} \end{aligned}$

Division and profiles Angle from the GC [degrees]

At small r: $\rho(r) \propto 1/r^{\gamma}$

6 profiles: cuspy: NFW, Moore mild: Einasto smooth: isothermal, Burkert EinastoB = steepened Einasto (effect of baryons?)

simulations:

DM halo	$ \alpha$	$r_s \; [\mathrm{kpc}]$	$\rho_s \; [{\rm GeV/cm^3}]$
NFW		24.42	0.184
Einasto	0.17	28.44	0.033
EinastoB	0.11	35.24	0.021
Isothermal	_	4.38	1.387
Burkert	_	12.67	0.712
Moore	_	30.28	0.105

DM halo profiles

Local clumps in the DM halo enhance the density.

For illustration:

Propagation

Propagation for antiprotons:

$$\frac{\partial f}{\partial t} - K(T) \cdot \nabla^2 f +$$

T kinetic energy

$$(\operatorname{sign}(z) f V_{\operatorname{conv}}) = Q - 2h \,\delta(z) \,\Gamma_{\operatorname{ann}} f$$

diffusion $C(T) = K_0 \beta (p/\text{GeV})^{\delta}$

Ô

 $\overline{\partial z}$

convective wind

spallations

Propagation

Propagation for antiprotons:

$$rac{\partial f}{\partial t} - K(T) \cdot
abla^2 f + rac{\partial}{\partial z} (diffusion$$

$$(\operatorname{sign}(z) f V_{\operatorname{conv}}) = Q - 2h \,\delta(z) \,\Gamma_{\operatorname{ann}} f$$

convective wind

spallations

Model	δ	K_0 in kpc ² /Myr	L in kpc	$V_{\rm conv}$ in km/s
\min	0.85	0.0016	1	13.5
med	0.70	0.0112	4	12
max	0.46	0.0765	15	5

 $K(T) = \frac{K_0 \beta \left(p/\text{GeV} \right)^{\delta}}{\delta}$

T kinetic energy

Propagation for antiprotons:

$$-K(T) \cdot \nabla^2 f + \frac{\partial}{\partial z} \left(\operatorname{sign}(z) f V_{\operatorname{conv}} \right) = Q - 2h \,\delta(z) \,\Gamma_{\operatorname{ann}} f$$

diffusion $K(T) = K_0 \beta \left(p/\text{GeV} \right)^{\delta}$ T kinetic energy

 $rac{\partial f}{\partial t}$ -

 Darrantain

Model	δ	K_0 in kpc ² /Myr	L in kpc	$V_{\rm conv}$ in km/s
min	0.85	0.0016	1	13.5
med	0.70	0.0112	4	12
max	0.46	0.0765	15	5
Solutio $\Phi_{ar{p}}(T$	on: $, \vec{r}_{\odot}) =$	$= B \frac{v_{\bar{p}}}{4\pi} \left(\frac{\rho_{\odot}}{M_{\rm DM}}\right)^2$	$R(T)\sum_{k}$	$\frac{1}{2} \langle \sigma v \rangle_k \frac{dN_{\bar{p}}^k}{dT}$

Propagation

Propagation for antiprotons: