Application of an analysis method based on a semi-analytical shower model to the first H.E.S.S. telescope
The 28th International Cosmic Ray Conference
Mathieu de Naurois, LPNHE Paris University VI/VII
\square The H.E.S.S. experiment
\square Principles

- Application to the Crab Nebula \& PKS2155-304 observations

The H.E.S.S. Experiment

$\square 4$ Cerenkov Imaging Telescopes

- $107 \mathrm{~m}^{2}$ dish, 960 pixel fast camera
- 2 telescopes operational (system completed early 2004)
- stereoscopic observations started
- Current official analysis :

Hillas parameters (moments), with box cuts (Conor Masterson's talk - OG 2.2.3)

Principles

\square Derived from the CAT analysis (Le Bohec et al)

- Use a model to describe the shower images in the camera
- analytical expression of shower development, cross sections, lateral \& angular distribution of particles in shower,... (some distributions adjusted on the simulation)
- multi-dimension numerical integration gives the ayerage shower
\square Fit the actual images to the model with a log-likelihood
- gives an intrinsic rejection variable (likelihood)
- gives energy \& impact point estimations
- Only single telescope analysis so far

Model generation

\square Originally developed by the CAT collaboration
\square Good agreement with Kaskade simulation

- Small mismatch (15%) at large impact parameters
\square Generated for $\mathrm{E} \in[50 \mathrm{GeV}, 20 \mathrm{TeV}]$ and impact distances up to 400 m

Mathieu de Naurois, H.E.S.S.

28 ${ }^{\text {th }}$ ICRC Tsukuba 2003

Number of electrons above 10, 20, $40 \& 80 \mathrm{MeV}$ as function of thickness (in rad. length)

Fit procedure

\square Log likelihood fit

- Probability density function of pixel amplitude is a convolution of:
- Poisson distribution of number of photoelectrons
- Gaussian distribution for PMT resolution

$$
\begin{aligned}
& f(x, \mu)=\sum_{n} \frac{\mu^{n} \mathrm{e}^{-\mu}}{n!\sqrt{2 \pi\left(\sigma_{p}^{2}+n^{2} \sigma_{\gamma}^{2}\right)}} \exp \left(\frac{-(x-n)^{2}}{2\left(\sigma_{p}^{2}+n^{2} \sigma_{\gamma}^{2}\right)}\right) \\
& \sigma_{p}=\text { Pedestal width }(N S B+\text { electronic noise }) \\
& \sigma_{s}=P M T \text { resolution }
\end{aligned}
$$

\square All pixels included (shower tails taken into account) except non-operational pixels

- Actual NSB on each pixel included in the likelihood
- 4 parameter fit (primary energy. impact distance, azimuthal angle, α angle)

Cuts

\square Use an analytical approximation of the likelihood mean and RMS --> goodness of fit variable
\square Cut on (Image Length)/(Image Amplitude) : kills single muons

\square Cut on (Image Width)/log(Image Amplitude)

- Cut on "Distance offset" OG-TG (variable orthogonal to α) : select showers possibly originating from as the center of the FOV

Results (Crab Nebula)

\square Crab Nebula, 4.73 live hours

- Significance increased from 18σ to $27 \sigma(8.1$-> $12.5 \sigma / \sqrt{\text { hour }}$)
- γ efficiency increased by 20%
- Signal/Background ratio increased by a factor of 3 (better hadron rejection $\epsilon_{\mathrm{h}}=1.3 \cdot 10^{-4}$) -> good for faint sources
- α distribution flat up to 180° instead of 90° (Take the image orientation into account)

- α resolution (FWHM of peak) improved from 3° to 2.15°

Results (PKS2155-304)

\square See Djannati's talk (OG 2.3.5) for Hillas analysis

- July 2002, 2.14 live hours
- $3.56 \mathrm{\gamma} / \mathrm{mn}$
- 16.4σ instead of 11σ

\square October 2002, 4.71 live hours
- Softer emission:
$1.36 \gamma / \mathrm{mn}$
- 10.6σ instead of 6.6σ

Efficency/Resolution

\square Rather flat efficiency over a wide energy range (flatter than Hillas box cut)

- Currently optimized for non-zero zenith angle
- Energy resolution: about 20% from 500 GeV to 20 TeV , but rather large energy-dependent bias due to incorrect timing handling in the model
-> to be treated in next generation

Conclusion

\square New Analysis method

- Better gamma efficiency, better hadron rejection, better alpha resolution
\square very powerful for faint sources
- Rather flat efficency
- Less sensitive to non-operational pixels (unbiased)
- But much slower and much more complicated to use

- Promising results for energy reconstruction, to be investigated further

