

BLV2013 MPIK Heidelberg, Germany 8-11 April 2013

MARE-1 in Milan: an update

Elena Ferri for the MARE collaboration Università di Milano-Bicocca & INFN Milano-Bicocca

Outline

- Direct neutrino mass measurement
- The calorimetric approach
- MARE: a project for a new Re/ho experiment
- MARE-1 in Milano
- MKDs R&D @ Milano Bicocca

Direct neutrino mass measurement

E. Ferri

The calorimetric approach

β calorimeter

3.0

ideally measures all the energy E released in the decay except for the v_{a} energy

General experimental requirements:

- High statistics at the beta spectrum end-point
- high energy resolution ΔE
- high Signal to Noise ratio
- small systematic effects

Calorimeters measure the entire spectrum at once:

- low $E_{\alpha} \beta$ decaying isotopes for more statistics near the end-point
- best choice ¹⁸⁷Re:

$$-E_0 = 2.5 \text{ keV}, \tau^{1/2} = 4 \times 10^{10} \text{ y}$$

• other option ¹⁶³Ho EC:

•
$$-E_0^{+} \approx 2.6 \text{ keV}, \tau^{1/2} \approx 4600 \text{ y}$$

BLV2013, 15-18 April

Cryogenic detectors as calorimeters

Detection Principle:

- $\Delta T = E/C$ where C is the total thermal capacity
 - low C: $C \sim (T/\Theta_D)^3$ in superconductors below T_C & dieletric
 - low T (10 ÷ 100 mK)
- ultimate limit to energy resolution:
 - statistical fluctuation of internal energy $\Delta E = (k_B T^2 C)^{1/2}$
- detect all deposited energy, including short-lived excited states (100 μ s)
- achieve very good energy resolution in the keV range

MARE - A project for a new Re/Ho experiment

Goal: a sub-eV direct neutrino mass measurement complementary to the KATRIN experiment

MARE 1

- activities aiming at isotope/technique selection (187Re or 163Ho options)
- activities using medium sized arrays to improve ¹⁸⁷Re measurement understanding and possibly calorimetric m_v limit
- detector and absorber coupling R&D activities

MARE 2

- very large experiment with a $m_{\!_{\rm V}}$ statistical sensitivity close to KATRIN but still improvable
- requires new improved detector technologies

MARE for sub-eV calorimetric m, measurement

MARE: Microcalorimeter Arrays for a Rhenium Experiment

Università di Genova e INFN Sez. di Genova, Italy Univ. di Milano-Bicocca, Univ. dell'Insubria e INFN Sez. di Milano-Bicocca, Italy Kirkhhof-Institute Physik, Universitat Heidelberg, Germany University of Miami, Florida, USA Wisconsin University, Madison, Wisconsin, USA Universidade de Lisboa and ITN, Portugal Università di Roma "La Sapienza" e INFN Sez. di Roma1, Italy Goddard Space Flight Center, NASA, Maryland, USA PTB, Berlin, Germany FBK, Trento e INFN Sez. di Padova, Italy NIST, Boulder, Colorado, USA SISSA - Trieste, GSI Darmstad, JPL/Caltech, CNRS Grenoble, ...

BLV2013, 15-18 April

E. Ferri

MARE 1

MARE-1: collection of activities aiming at isotope/technique selection

o ¹⁸⁷Re – high statistics measurement

- o asses systematics
- o test large arrays
- o lower limit to few eV

o ¹⁶³Ho – high statistics measurement – R&D for ¹⁶³Ho production

- o measure Q_{EC}
- o study spectrum shape
- o asses systematics

Different techniques:

- TES Transition Edge Sensor
- MMC Magnetic MicroCalorimeter
- MKID Microwave Kinetic Inductance Detector

MARE-1 in Milan: Milano/FBK/Wisconsin/NASA

- $m_{ve} < 2 \text{ eV/c}^2$
- 10¹⁰ events 300 sensors
- 8 arrays of Si:P thermistors with AgReO₄ absorbers
- energy resolution 25 eV @ 2.6 keV

The first phase is needed:

- because it's the only possible one with present technology
- To investigate systematics in thermal calorimeters

very important to cross-check spectrometer results

MARE-1 detectors

• 187 Re β -decay

- ${}^{187}\text{Re} \rightarrow {}^{187}\text{Os} + \text{e-} + \nu_{e}$ $E_0 = 2.47 \text{ keV}$
- i. a. 63% and τ =42.3 Gy
- Single crystal of silver perrhenate (AgReO₄)
 - mass ~ 500 μ g per pixel (A_{β}~ 0.3 decay/sec)
 - regular shape $(600 \times 600 \times 250 \ \mu m^3)$
 - low heat capacity due to Debye law
- 6x6 array of Si:P semiconductors (NASA-GSFC)
 - pixel: 300x300x1.5 μm³
 - high energy resolution
 - developed for X-ray spectroscopy with HgTe absorber (ASTRO-E2)

Cryogenic set-up of MARE 1 @ Milano Bicocca

MARE 1 @ Milano-Bicocca

All the problems concerning the cryogenic set-up have been solved.

Thanks to the improvements added to the cryogenic set-up the detector target performances have been achieved.

- First spectra acquired
- Completed assembly of the first array

MARE 1 @ Milano-Bicocca

first spectrum acquired after the improvements added to MARE-1 cryogenic set-up

First array of MARE-1

Thermal coupling

- Araldit or ST1266: thermistor/spacer
- ST2850: spacer/AgReO₄

- > 6 silicon spacers are attached with Araldite Normal
- > 10 with Araldite Rapid
- > 15 with **ST1266**

First array of MARE-1

A run aimed to test the performance of this setup is ongoing, after which the absorbers will be glued also on the second array. With two arrays, a sensitivity of 4.5 eV at 90% C.L. is expected in three years running time.

E. Ferri

MARE 1 in Milano: sensitivity

- setup designed to host up to 8 arrays
- 288 AgReO₄ crystals
- start with 2 arrays (72 ch.)
- gradual deployment

Since only two arrays are available up to now, it is useful to estimate the sensitivity on neutrino mass over the years by increasing the detectors number from year to year.

Analytic approach (1st order)

BLV2013, 15-18 April

MARE extensions: ¹⁶³Ho EC measurement

•Calorimetric measurement of non-radiative Dy atomic de-excitations •Breit Wigner M,N,O lines have an end-point at the Q value •rate at end-point may be as high as for ¹⁸⁷Re but depends on $Q_{_{FC}}$

• Q_{EC} ? Measured: $Q_{EC} = 2.3 \div 2.8$ keV. Recommended: $Q_{EC} = 2.555$ keV

• $\tau_{1/2} \approx 4570$ years: few active nuclei are needed

•can be implanted in any suitable microcalorimeter absorber •¹⁶³Ho production by neutron irradiation of ¹⁶²Er enriched Er

BLV2013, 15-18 April

E. Ferri

MKIDs R&D @ Milano-Bicocca

• resonator exploiting the *T* dependence of inductance in a superconducting film

- detectors suitable for large absorbers
- Good time resolution (low pile-up f_{pp})
- high energy resolution
- multiplexing for very large number of pixel

Sensitivity

 $\begin{array}{l} \Delta \mathsf{E} = 5 \ \mathsf{eV} \\ \mathsf{t}_{\mathsf{M}} = 36000 \ \mathsf{detectors} \ \mathsf{x} \ \mathsf{3} \ \mathsf{years} \\ A_{\beta} = 20 \ \mathsf{c/s/det} \\ \tau_{\mathsf{nise}} = 1 \ \mathsf{\mu s} \rightleftharpoons \mathsf{m}_{\mathsf{v}} < 0.2 \ \mathsf{eV} \\ \tau_{\mathsf{nise}} = 100 \ \mathsf{\mu s} \rightleftharpoons \mathsf{m}_{\mathsf{v}} < 0.4 \ \mathsf{eV} \end{array}$

application to bulky absorber still requires further efforts

MKIDs for ¹⁶³Ho EC decay end point measurement

4-12 GHz cryo amp

So far tested stoichiometric TiN ($T_2=4,6K$) films and Ti/TiN multilayer (produced by FBK), which behaves like a substoichiometric TiN film (T_=1,6K)

Gap parameter:

- TiN 0.8 meV

- Ti/TiN 0.26 meV

The devices were tested with ⁵⁵Fe (6keV) and AI X-ray (1,5keV) and the first pulses were acquired

Not resolving yet because of events interacting in the Si substrate under the superconductor

BLV2013, 15-18 April

E. Ferri

fondazione

19

MKIDs for ¹⁶³Ho EC decay end point fondazione c a r i p l o

$\Delta E_{th} = 2 keV / N_{qp}^{1/2} = 1.5 eV$

This work is supported by Fondazione Cariplo through the project "Development of Microresonator Detectors for Neutrino Physics' (grant 2010-2351).

BLV2013, 15-18 April

Conclusion

First array of MARE-1 has been assembled

 \rightarrow 31 thermistors are equipped with AgReO4 absorbers

The goal performances of the detectors have been achieved \rightarrow first spectra were acquired obtaining a resolution of ~28eV @ 1,5keV

The next step will be to assemble the detectors on the second array \rightarrow start of data taking in the next months

In the meanwhile new detector technology under investigation \rightarrow Ho EC measurement with MKDs