
GLoBES
General Long Baseline Experiment Simulator

User’s and experiment definition manual

Patrick Hubera, Joachim Koppb, Manfred Lindnerc,
Walter Winterd

Version from May 5, 2020 for GLoBES 3.2.18

aVirginia Tech, Center for Neutrino Physics, Blacksburg, VA 24061, USA
bTheoretical Physics Department, CERN and Johannes Gutenberg University Mainz (Germany),

1211 Geneve 23, Switzerland
cMax–Planck–Institut für Kernphysik, Postfach 10 39 80, D–69029 Heidelberg, Germany
dDeutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen, Germany

Copyright c©2004–2020 The GLoBES Team. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the invariant Sections “Terms of usage of GLoBES”
and “Acknowledgments”, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled ”GNU Free Documentation
License”.

I

What is GLoBES?

GLoBES (“General Long Baseline Experiment Simulator”) is a flexible software package to
simulate neutrino oscillation long baseline and reactor experiments. On the one hand, it
contains a comprehensive abstract experiment definition language (AEDL), which allows
to describe most classes of long baseline experiments at an abstract level. On the other
hand, it provides a C-library to process the experiment information in order to obtain
oscillation probabilities, rate vectors, and ∆χ2-values. Currently, GLoBES is available for
GNU/Linux. Since the source code is included, the port to other operating systems is in
principle possible. The software as well as up-to-date versions of this manual can be found
at this URL: http://www.mpi-hd.mpg.de/~globes

GLoBES allows to simulate experiments with stationary neutrino point sources, where
each experiment is assumed to have only one neutrino source. Such experiments are neu-
trino beam experiments and reactor experiments. Geometrical effects of a source distri-
bution, such as in the sun or the atmosphere, can not be described. In addition, sources
with a physically significant time dependence, such as supernovæ, can not be studied. It
is, however, possible to simulate beams with bunch structure, since the time dependence
of the neutrino source is physically only important to suppress backgrounds. Further-
more, experiments with discrete numbers of sources and detectors can be implemented by
user-defined systematics in GLoBES 3.0 and higher.

On the experiment definition side, either built-in neutrino fluxes (e.g., neutrino fac-
tory, β-Beam) or arbitrary fluxes can be used. Similarly, arbitrary cross sections, energy
dependent efficiencies, the energy resolution function, the considered oscillation channels,
backgrounds, and many other features can be specified. For the systematics, energy normal-
ization and calibration errors can be simulated in a straightforward way, or the systematics
can be completely user-defined (Version 3.0 and higher). Note that the energy ranges and
windows, as well as the bin widths can be (almost) arbitrarily chosen, which means that
variable bin widths are allowed. Together with GLoBES comes a number of pre-defined
experiments in order to demonstrate the capabilities of GLoBES and to provide prototypes
for new experiments.

With the C-library, one can extract the ∆χ2 for all defined oscillation channels for
an experiment or any combination of experiments. Of course, also low-level information,
such as oscillation probabilities or event rates, can be obtained. GLoBES includes the
simulation of neutrino oscillations in matter with arbitrary matter density profiles, as well
as it allows to simulate the matter density uncertainty. As one of the most advanced
features of GLoBES, it provides the technology to project the ∆χ2, which is a function of
all oscillation parameters, onto any subspace of parameters by local minimization. This

II

approach allows the inclusion of multi-parameter-correlations, where external input (e.g.,
from solar experiments) can be imposed, too. Applications of the projection mechanism
include the projections onto the sin2 2θ13-axis and the sin2 2θ13-δCP-plane. In addition, all
oscillation parameters can be kept free to precisely localize degenerate solutions.

In the newest version GLoBES 3.0 flexibility is introduced at all levels. At the prob-
ability level, the transition probabilities can be modified to introduce new physics. At
the systematics level, user-defined systematical errors and correlations between sources or
detectors can be simulated, and at the analysis level, arbitrary input from external mea-
surements can be added. Therefore, GLoBES now provides solutions for new classes of
problems.

III

Terms of usage of GLoBES

Referencing the GLoBES software

GLoBES is developed for academic use. Thus, the GLoBES Team would appreciate being
given academic credit for it. Whenever you use GLoBES to produce a publication or a talk
indicate that you have used GLoBES and please cite the following references [1, 2]

P. Huber, M. Lindner and W. Winter
Simulation of long baseline neutrino oscillation experiments with GLoBES,
Comput. Phys. Commun. 167 (2005) 195, arXiv:hep-ph/0407333,

P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter
New features in the simulation of neutrino oscillation experiments with
GLoBES 3.0, Comput. Phys. Commun. 177 (2007) 432, arXiv:hep-ph/0701187,

but not this manual. This manual itself is not a scientific publication and will not be
submitted to a scientific journal. It will evolve during time since it is intended for regular
revision. Besides that, many of the data which are used by GLoBES and distributed together
with it should be properly referenced. For details see below.

Apart from that, GLoBES is free software and open source, i.e., it is licensed under the
GNU Public License.

Referencing the data in GLoBES

GLoBES wouldn’t be useful without having high quality input data. Much of these input
data have been published elsewhere and the authors of those publications would appreciate
to be cited whenever their work is used. It is solely the user’s responsibility to make sure
that he understands where the input material for GLoBES comes from and if additional
work has to be cited in addition to the GLoBES papers [1, 2]. To assist with this task, we
provide the necessary information for the data coming along together with GLoBES.

When using the built-in Earth matter density profile, the original source is Refs. [3,4].
All files ending with .dat or .glb in the data subdirectory of the GLoBES tar-ball have

on top a comment field which clearly indicates which studies should be cited when using
a certain file. Make sure that dependencies are correctly tracked, i.e., in some cases files
included by other files need to be checked, too (for example, cross section or flux files).

IV

One can use the -v3 option to the globes command to see which files are included (cf.,
Chapter 12). It is recommended that you use the same style for your own input files, since
then, in case they are distributed, everybody will know how to correctly reference your
work.

V

What is new in GLoBES?

Here we briefly summarize the main changes of the new GLoBES version. For details, please
refer to the respective parts of the manual. Please note that any new GLoBES version is
compatible with older versions, i.e., old application software and AEDL files should, with
minor modifications, run with the new version as well. However, some function names
and features will evolve during time, which means that outdated features may not be
documented anymore.

Version 3.2.18

• Systematics correlated across experiments/detector; see Sec. 11.6.1. This feature has
been extensively tested and used, among others, for the DUNE CDR [5].

• Fitting of actual data; see Sec. 11.6.2.

Version 3.0

Here comes a summary of the most important changes in this version for users of earlier
versions of GLoBES.

New features

• User-defined systematics, which can be used to simulate reactor experiments etc.; see
Secs. 3.2 and 11.6

• User-defined priors to include arbitrary external information in the χ2 before
marginalization over the oscillation parameters; see Sec. 4.5

• Non-standard physics support; see Chapter 8

• Beta beam fluxes available as built-in fluxes; see Sec. 11.1

• Enhanced support for parallelization, such as Condor; see, e.g., page 124

• Updated AEDL files; see Table 2.1

VI

• New AEDL features, such as the support of lists as variables and an interpolation
routine; see Sec. 10.4

• Clean-up of inconsistencies, such as an overall (internal) normalization factor in the
flux files; see, e.g., page 145

• Faster probability engine, easier installation (internal changes)

• Experimental feature: Alternative minimizer provided, which is usually faster than
the standard minimizer; see Chapter 9

Major changes

Most of the modifications should not require that old pieces of software be changed. How-
ever, the following changes could be relevant:

• glbSetDensityParams has to be used with glbDefineParams and
glbSetDensityProjectionFlag together with glbDefineProjection, because
unexpected pre-defined behavior should be avoided.

• Functions glbSetFilter, glbGetFilter, glbSetFilterState, and
glbGetFilterState replaced by functions ...InExperiment.

• AEDL requires now that $version be used to define the minimum version number
this AEDL file is to be used with. With this requirement one can easily avoid that
new AEDL files with new features be used with old versions of GLoBES which may
not recognize these features.

• Some of the earlier AEDL files have been updated, changed names, or have been
removed. In addition, new files have been added. Although old AEDL files will run
as usual for compatibility, they will not be supported by the GLoBES Team anymore.
You should make sure to keep these files when updating GLoBES.

• The implementation of the tilt (systematics) has slightly changed. The tilt also works
for variable bin widths. Therefore, you will obtain slightly different results when you
run the same AEDL between older and newer versions of GLoBES.

Minor changes

Here we document the most important changes which should not affect older software:

• Functions and constants renamed for consistency:

– glbChiTheta → glbChiTheta13

– glbChiThetaDelta → glbChiTheta13Delta

– glbChiDms → glbChiDm21

VII

– glbChiDm → glbChiDm31

– GLB_DM_SOL → GLB_DM_21

– GLB_DM_ATM → GLB_DM_31

– glbSetStartingValues → glbSetCentralValues

– glbGetStartingValues → glbGetCentralValues

– glbGetProfileData → glbGetProfileDataInExperiment

• Rate access changed; see Sec. 6.3

• Systematics concept changed, concept of error dimensions removed;
@backgroundcenter removed, central values for all systematics parameters
now zero; see Sec. 11.6

VIII

IX

Contents

How to use this manual 1

I User’s manual 1

1 A GLoBES tour 3

2 GLoBES basics 13
2.1 Initialization of GLoBES . 13
2.2 Units in GLoBES and the integrated luminosity 17
2.3 Handling oscillation parameter vectors . 18
2.4 Computing the simulated data . 21
2.5 Version control and debugging . 21

3 Calculating χ2 with systematics only 23
3.1 Built-in systematics . 23
3.2 User-defined systematics calculation∗ . 25

4 Calculating χ2-projections: how one can include correlations 31
4.1 Introduction . 31
4.2 The treatment of external input . 33
4.3 Projection onto the sin2 2θ13-axis or δCP-axis 35
4.4 Projection onto any hyperplane∗ . 39
4.5 User-defined priors∗ . 43

5 Locating degenerate solutions 45
5.1 Minimization over all oscillation parameters 45
5.2 Advanced tricks for degeneracy localization∗ 47

6 Obtaining low-level information 51
6.1 Oscillation probabilities . 51
6.2 Information from AEDL files∗ . 52
6.3 Event rates∗ . 54
6.4 Fluxes and cross sections∗ . 56

X CONTENTS

7 Changing experiment parameters at running time 57

7.1 Systematics . 57

7.2 Baseline and matter density profile∗ . 60

7.3 External parameters in AEDL files∗ . 63

7.4 Algorithm parameters: Filter functions∗ 64

8 Simulating non-standard physics∗ 67

8.1 Modification of GLoBES . 67

8.2 Using non-standard physics in the application software 71

8.3 Defining oscillation parameter names at running times 73

9 Experimental features∗ 75

II The Abstract Experiment Definition Language – AEDL 77

10 Getting started 79

10.1 General concept of the experiment simulation 79

10.2 A simple example for AEDL . 83

10.3 Introduction to the syntax of AEDL . 86

10.4 More advanced AEDL features∗ . 88

11 Experiment definition with AEDL 91

11.1 Source properties and integrated luminosity 91

11.2 Baseline and matter density profile . 94

11.3 Cross sections . 95

11.4 Oscillation channels . 96

11.5 Energy resolution function . 99

11.5.1 Introduction and principles . 99

11.5.2 Bin-based automatic energy smearing 102

11.5.3 Low-pass filter∗ . 104

11.5.4 Manual energy smearing∗ . 105

11.6 Rules and the treatment of systematics . 106

11.6.1 Systematics correlated across experiments and rules* 111

11.6.2 Fitting actual experimental data* 112

12 Testing & debugging of AEDL files 115

12.1 Basic usage of the globes binary . 115

12.2 Testing AEDL files . 116

Acknowledgments 119

CONTENTS XI

A GLoBES installation 121
A.1 Prerequisites for installation of GLoBES . 121
A.2 Installation Instructions . 121

B Catalogue of AEDL-Files 129
B.1 Superbeam Experiments . 129
B.2 Reactor Experiments . 133
B.3 Beta Beam Experiments . 135
B.4 Neutrino Factory Experiments . 140

C Flux normalization in GLoBES∗ 145

D The GNU General Public License 149

E GNU Free Documentation License 155

Bibliography 160

F Indices 165
API functions . 166
API constants & macros . 168
AEDL reference . 169
Index . 171

XII CONTENTS

1

How to use this manual

As it is illustrated in Fig. 1, GLoBES consists of several modules.

GLoBES

GLoBES User Interface

Application software to compute

high−level sensitivities, precision etc.

AEDL

Abstract Experiment

AEDL−file(s) and

simulate experiment(s)

provides functions to

C−library which loads
AEDL−
file(s)

Defines Experiments

and modifies them

Definition Language

Figure 1: Different modules in GLoBES.

AEDL(“Abstract Experiment Definition Language”) is a language to define experiments
in the form of ordinary text files. One or more of the resulting AEDL files can then be
processed together with supporting flux or cross section files by the user interface. The user
interface is a C-library, which loads one or more AEDL file(s) containing the experiment
definition(s). The user interface is linked against the application software, and provides
the user interface functions for the intended experiment simulation.

The application software is, except for some example files, not part of GLoBES, since
the evaluation of the experiment performance is often a matter of taste and definition.
In addition, the algorithms depend, especially for high-precision instruments, very much
on the oscillation parameters. In general, it is quite simple to simulate superbeams and
reactor experiments. However, because of the more complicated topology, the simulation of
neutrino factories is much more difficult. In order to demonstrate some of these difficulties,
we present in this manual mainly examples with neutrino factories. These examples can

2 CONTENTS

be found in Part I within the boxed pages. As complete files, they are also available in the
GLoBES software package.

The GLoBES software may have two target groups: Physicists, who are mainly in-
terested in optimizing the potential of specific experimental setups, and others, who are
mainly interested in the physics potential of different experiment types from a theoretical
point of view. For the first group, AEDL could be the most interesting aspect of GLoBES,
where the user interface is only a tool to obtain specific parameter sensitivities. In this
case, GLoBES could serve as a unified tool for the comparison and optimization of different
experiment setups on equal footing, where it is the primary objective to simulate the ex-
periments as accurate as possible. In addition, changes in experimental parameters, such
as efficiencies or energy resolutions, can quickly be tested. For the second user group, the
pre-defined experiment definition files might already be sufficient to test new conceptual
approaches, and the user interface is the most interesting aspect for sophisticated applica-
tions including correlations, degeneracies, and multi-experiment setups. In either case, the
GLoBES software could serve as a platform for the exchange of experiment definitions, and
for an efficient splitting of work between experimentalists and theorists.

The user interface functions are described in Part I of this manual, which is the “user’s
manual”. In there, first of all a short GLoBES tour is given in Chapter 1 in order to have
an overview over GLoBES. After that, the user interface is successively introduced from
very basic to more sophisticated functions. Eventually, it is demonstrated how one can
change many experiment parameters at running time (such as baseline or target mass),
and how one can obtain low-level information. We recommend that everybody interested
in GLoBES should become familiar at least with the concepts in Chapter 1 and some of the
examples on the boxed pages. The examples can be directly compiled from the respective
directory in the GLoBES software package. The corresponding figures are produced with
the Mathematica Notebook DocPlots.nb, which can be found in the example directory as
well.

In Part II of the manual, AEDL is described. After an introductory chapter, all functions
are defined in greater detail. This part might be more interesting for the experimental users
who want to modify or create AEDL files. A useful tool in this context is the executable
program globes, which returns event rates and other information for individual AEDL
files without further programming. For example, flux normalizations can with this tool be
easily adjusted to reproduce the event rates of a specific experiment. It is described in the
last chapter of Part II.

In this version of the manual, introductory topics and advanced topics are mixed if
they belong to the same subject. Therefore, we have marked more advanced material by
a star (∗). This material can be skipped in a first reading of the manual. In some cases,
it may be even recommendable to do so because knowledge of AEDL is required (which is
introduced in the second part).

1

Part I

User’s manual

3

Chapter 1

A GLoBES tour

In this first chapter, we show a GLoBES tour illustrating the main features of GLoBES. The
complete example can be found as example-tour.c in the example subdirectory of your
GLoBES distribution. The output is written to stream, which can be either stdout, or a
file.1 Details about how to use GLoBES with C can found in Chapter 2 and the following
chapters. You can also find a summary of the most important GLoBES χ2-functions in
Table 1.1. Note that this chapter can be skipped without loss of relevant information.

Initialize the GLoBES library:

glbInit(argv[0]);

Define my standard oscillation parameters:

double theta12 = asin(sqrt(0.8))/2;

double theta13 = asin(sqrt(0.001))/2;

double theta23 = M_PI/4;

double deltacp = M_PI/2;

double sdm = 7e-5;

double ldm = 2e-3;

Load one neutrino factory experiment:

glbInitExperiment("NFstandard.glb",&glb_experiment_list[0],

&glb_num_of_exps);

Initialize a number of parameter vectors we are going to use later:

glb_params true_values = glbAllocParams();

glb_params fit_values = glbAllocParams();

glb_params central_values = glbAllocParams();

glb_params input_errors = glbAllocParams();

glb_params minimum = glbAllocParams();

1Note that the output in this section can be slightly different from yours depending on the current
version of the probability engine, systematics implementation, and AEDL file used.

4 CHAPTER 1. A GLoBES tour

Function Purpose Parameters → Result
Systematics only:
glbChiSys χ2 with systematics

only
(glb_params in, int exp, int

rule) → double χ2

Projections onto axes:
glbChiTheta13 Projection onto θ13-

axis
(glb_params in, glb_params out,

int exp) → double χ2

glbChiDelta Projection onto δCP-
axis

(glb_params in, glb_params out,

int exp) → double χ2

glbChiTheta23 Projection onto θ23-
axis

(glb_params in, glb_params out,

int exp) → double χ2

glbChiDm31 Projection onto
∆m2

31-axis
(glb_params in, glb_params out,

int exp) → double χ2

glbChiDm21 Projection onto
∆m2

21-axis
(glb_params in, glb_params out,

int exp) → double χ2

Projection onto plane:
glbChiTheta13Delta Projection onto θ13-

δCP-plane
(glb_params in, glb_params out,

int exp) → double χ2

Projection onto any hyper-plane:
glbChiNP Projection onto any

n-dimensional hyper-
plane

(glb_params in, glb_params out,

int exp) → double χ2

Needs glbSetProjection before!

Localization of degeneracies:
glbChiAll (Local) Minimization

over all parameters
(glb_params in, glb_params out,

int exp) → double χ2

Table 1.1: The GLoBES standard function to obtain a χ2-value with systematics only or systematics
and correlations. The parameters rule and exp can either be GLB_ALL for all initialized experiment or
the experiment number (0 to glb_num_of_exps-1) for a specific experiment. The format of glb_params is
discussed in detail in Chapter 2. Note that all functions but glbChiSys are using minimizers which have
to be initialized with glbSetInputErrors and glbSetCentralValues first.

CHAPTER 1. A GLoBES tour 5

Assign values to our standard oscillation parameters and the standard matter density
scaling factors:

glbDefineParams(true_values,theta12,theta13,theta23,deltacp,sdm,ldm);

glbSetDensityParams(true_values,1.0,GLB_ALL);

Compute the simulated data with our standard parameters:

glbSetOscillationParameters(true_values);

glbSetRates();

Return the oscillation probabilities in vacuum and matter for the electron neutrino as initial
flavor:

int i;

fprintf(stream,"\nOscillation probabilities in vacuum: ");

for(i=1;i<4;i++) fprintf(stream,"1->%i: %g",i,

glbVacuumProbability(1,i,+1,50,3000));

fprintf(stream,"\nOscillation probabilities in matter: ");

for(i=1;i<4;i++) fprintf(stream,"1->%i: %g ",i,

glbProfileProbability(0,1,i,+1,50));

→ Output:

Oscillation probabilities in vacuum: 1->1: 0.999955 1->2: 2.58628e-05 1->3:
1.92142e-05
Oscillation probabilities in matter: 1->1: 0.999965 1->2: 2.01364e-05 1->3:
1.49644e-05

Now assign fit values, where we will test the fit value sin2 2θ13 = 0.0015:

glbCopyParams(true_values,fit_values);

glbSetOscParams(fit_values,asin(sqrt(0.0015))/2,GLB_THETA_13);

Compute χ2 with systematics only for all experiments and rules:

chi2 = glbChiSys(fit_values,GLB_ALL,GLB_ALL);

fprintf(stream,"chi2 with systematics only: %g\n\n",chi2);

→ Output:

chi2 with systematics only: 22.433

This we would obtain from the first appearance channel only:

chi2 = glbChiSys(fit_values,0,0);

fprintf(stream,"This we would have from the CP-even appearance

channel only: %g\n\n",chi2);

6 CHAPTER 1. A GLoBES tour

→ Output:

This we would have from the CP-even appearance channel only: 21.1569

The sum over all rules again gives:

chi2 = glbChiSys(fit_values,GLB_ALL,0)+ glbChiSys(fit_values,GLB_ALL,1)+

glbChiSys(fit_values,GLB_ALL,2)+ glbChiSys(fit_values,GLB_ALL,3);

fprintf(stream,"The sum over all rules gives again: %g\n\n",chi2);

→ Output:

The sum over all rules gives again: 22.433

Let’s prepare the minimizers for taking into account correlations. Set errors for external
parameters, too: 10% for each of the solar parameters, and 5% for the matter density.

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,0);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetCentralValues(true_values);

glbSetInputErrors(input_errors);

Then we can calculate χ2 including the full multi-parameter correlation, and show where
GLoBES actually found the minimum (note that this takes somewhat longer than system-
atics only). This corresponds to a projection onto the sin2 2θ13-axis:

chi2 = glbChiTheta13(fit_values,minimum,GLB_ALL);

fprintf(stream,"chi2 with correlations: %g \n",chi2);
fprintf(stream,"Position of minimum: theta12, theta13, theta23,

delta, sdm, ldm, rho\n");
glbPrintParams(stream,minimum);

fprintf(stream,"Note that s22theta13 is unchanged/kept fixed:

%g! \n\n", pow(sin(2*glbGetOscParams(minimum,GLB_THETA_13)),2));

→ Output:

chi2 with correlations: 1.99794
Position of minimum: theta12,theta13,theta23,delta,sdm,ldm,rho
0.541226 0.0193698 0.746156 1.74968 6.64399e-05 0.00200514
1.00341
Iterations: 1988
Note that s22theta13 is unchanged/kept fixed: 0.0015!

Instead of including the full correlation, we can take the correlation with every parameter
except for δCP, i.e., we keep (in addition to θ13) δCP fixed. This corresponds to a projection
onto the sin2 2θ13-δCP-plane:

CHAPTER 1. A GLoBES tour 7

chi2 = glbChiTheta13Delta(fit_values,minimum,GLB_ALL);

fprintf(stream,"chi2 with correlations other than with deltacp:

%g \n\n",chi2);

→ Output:

chi2 with correlations other than with deltacp: 4.02974

Similarly, we can only take into account the correlation with δCP. For this, we need to
define our own (user-defined) projection, where only δCP (and the matter density) is a free
parameter:

glb_projection myprojection = glbAllocProjection();

glbDefineProjection(myprojection,GLB_FIXED, GLB_FIXED, GLB_FIXED,

GLB_FREE, GLB_FIXED, GLB_FIXED);

glbSetDensityProjectionFlag(myprojection,GLB_FREE,GLB_ALL);

glbSetProjection(myprojection);

chi2 = glbChiNP(fit_values,minimum,GLB_ALL);

fprintf(stream,"chi2 with correlation only with deltacp:

%g \n\n",chi2);
glbFreeProjection(myprojection);

→ Output:

chi2 with correlation only with deltacp: 2.72943

We can also switch of the systematics and compute the statistics χ2 only:

glbSwitchSystematics(GLB_ALL,GLB_ALL,GLB_OFF);

chi2 = glbChiSys(fit_values,GLB_ALL,GLB_ALL);

glbSwitchSystematics(GLB_ALL,GLB_ALL,GLB_ON);

fprintf(stream,"chi2 with statistics only:

%g\n\n",chi2);

→ Output:

chi2 with statistics only: 37.9736

Let us now locate the exact position2 of the sgn-degeneracy:

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,ldm/3);

glbDefineParams(central_values,theta12,theta13,theta23,

deltacp,sdm,-ldm);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetDensityParams(starting_errors,1.0,GLB_ALL);

glbSetCentralValues(central_values);

2For an exact definition of inverted hierarchy, see page 47.

8 CHAPTER 1. A GLoBES tour

glbSetInputErrors(input_errors);

chi2=glbChiAll(central_values,minimum,GLB_ALL);

fprintf(stream,"chi2 at minimum: %g \n",chi2);
fprintf(stream,"Position of minimum:

theta12,theta13,theta23,delta,sdm,ldm,rho\n");
glbPrintParams(stream,minimum);

→ Output:

chi2 at minimum: 4.2137
Position of minimum: theta12,theta13,theta23,delta,sdm,ldm,rho
0.585006 0.0275073 0.725679 1.05251 7.80256e-05 -0.00191273
0.979049
Iterations: 3184

After testing these functions with only one experiment, let us now go to a two-experiment
setup with two different neutrino factory baselines. Since the GLoBES parameter vectors
depend on the number of experiments, we have to free them first:

glbFreeParams(true_values);

glbFreeParams(fit_values);

glbFreeParams(central_values);

glbFreeParams(input_errors);

glbFreeParams(minimum);

Then we clear the experiment list and load the new experiments:

fprintf(stream,"\nNOW: TWO-EXPERIMENT SETUP

NuFact at 3000km+NuFact at 7500km\n\n");

glbClearExperimentList();

glbInitExperiment("NFstandard.glb",&glb_experiment_list[0],

&glb_num_of_exps);

glbInitExperiment("NFstandard.glb",&glb_experiment_list[0],

&glb_num_of_exps);

→ Output:

NOW: TWO-EXPERIMENT SETUP NuFact at 3000km+NuFact at 7500km

Then we need to change the baseline of the second experiment, where we set the density
to the average density of this baseline:

double* lengths;

double* densities;

CHAPTER 1. A GLoBES tour 9

glbAverageDensityProfile(7500,&lengths,&densities);

fprintf(stream,"Magic baseline length: %g,

Density: %g\n\n",lengths[0],densities[0]);
glbSetProfileDataInExperiment(1,1,lengths,densities);

free(lengths);

free(densities);

→ Output:

Magic baseline length: 7500, Density: 4.25286

Now we can re-initialize our parameter vectors again:

true_values = glbAllocParams();

fit_values = glbAllocParams();

central_values = glbAllocParams();

input_errors = glbAllocParams();

minimum = glbAllocParams();

In addition, we repeat the procedure for the simulated rates and the fit parameter vector:

glbDefineParams(true_values,theta12,theta13,theta23,deltacp,sdm,ldm);

glbSetDensityParams(true_values,1.0,GLB_ALL);

glbSetOscillationParameters(true_values);

glbSetRates();

glbCopyParams(true_values,fit_values);

glbSetOscParams(fit_values,asin(sqrt(0.0015))/2,GLB_THETA_13);

Here comes the χ2 with systematics only for all experiments and rules:

chi2 = glbChiSys(fit_values,GLB_ALL,GLB_ALL);

fprintf(stream,"chi2 with systematics for all exps:

%g\n",chi2);

→ Output:

chi2 with systematics for all exps: 30.5678

Compute χ2 for each experiment and compute the sum:

chi2 = glbChiSys(fit_values,0,GLB_ALL);

fprintf(stream,"chi2 with systematics for 3000km: %g\n",chi2);
chi2b = glbChiSys(fit_values,1,GLB_ALL);

fprintf(stream,"chi2 with systematics for 7500km: %g\n",chi2b);
fprintf(stream,"The two add again to:

%g\n\n",chi2+chi2b);

10 CHAPTER 1. A GLoBES tour

→ Output:

chi2 with systematics for 3000km: 22.433
chi2 with systematics for 7500km: 8.1348
The two add again to: 31.0797

Similarly, compute the χ2 with correlations for each experiment and their combination.
Compare it to the χ2 for all experiments: the sum of the individual results is not equal to
the χ2 of the combination anymore. Note that there are now two densities in the output
vectors.

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,0);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetCentralValues(true_values);

glbSetInputErrors(input_errors);

chi2 = glbChiTheta13(fit_values,minimum,0);

fprintf(stream,"chi2 with correlations for 3000km: %g \n",chi2);
glbPrintParams(stream,minimum);

chi2b = glbChiTheta13(fit_values,minimum,1);

fprintf(stream,"\nchi2 with correlations for 7500km:

%g \n",chi2b);
glbPrintParams(stream,minimum);

chi2sum = glbChiTheta13(fit_values,minimum,GLB_ALL);

fprintf(stream,"\nchi2 with correlations for combination:

%g \n",chi2sum);
glbPrintParams(stream,minimum);

fprintf(stream,"\nThe sum of the two chi2s is %g,

whereas the total chi2 is %g !\n\n",chi2+chi2b,chi2sum);

→ Output:

chi2 with correlations for 3000km: 1.99794
0.541226 0.0193698 0.746156 1.74968 6.64399e-05 0.00200514
1.00341 1
Iterations: 1988

chi2 with correlations for 7500km: 0.803787
0.556503 0.0193698 0.771812 4.75971 7.00813e-05 0.0020012
1 1.01201
Iterations: 798

chi2 with correlations for combination: 3.68133
0.543335 0.0193698 0.77004 1.75576 6.59505e-05 0.00199913
1.00333 1.03269
Iterations: 2187

CHAPTER 1. A GLoBES tour 11

The sum of the two chi2s is 2.80173, whereas the total chi2 is 3.68133!

Now find the sgn(∆m2
31)-degeneracy for the neutrino factory at the short baseline and test

if it is still present in the combination of the two baselines:

glbDefineParams(input_errors,theta12*0.1,theta13,theta23,

deltacp,sdm*0.1,ldm/3);

glbDefineParams(central_values,theta12,theta13,theta23,

deltacp,sdm,-ldm);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetDensityParams(central_values,1.0,GLB_ALL);

glbSetCentralValues(central_values);

glbSetInputErrors(input_errors);

chi2=glbChiAll(central_values,minimum,0);

fprintf(stream,"chi2 at minimum, L=3000km: %g \n",chi2);
glbPrintParams(stream,minimum);

chi2=glbChiAll(minimum,minimum,GLB_ALL);

fprintf(stream,"\nchi2 for combination at minimum of L=3000km:

%g \n",chi2);
glbPrintParams(stream,minimum);

→ Output:

chi2 at minimum, L=3000km: 4.82021
0.584568 0.026488 0.727714 1.09015 7.78747e-05 -0.00191163
0.978867 1
Iterations: 3298

chi2 for combination at minimum of L=3000km: 59.4879
0.599908 0.0172467 0.768342 1.39186 8.198e-05 -0.00189508
0.970733 1.17125
Iterations: 2327

Finally, we have to free the parameter vectors again:

glbFreeParams(true_values);

glbFreeParams(fit_values);

glbFreeParams(central_values);

glbFreeParams(input_errors);

glbFreeParams(minimum);

12 CHAPTER 1. A GLoBES tour

13

Chapter 2

GLoBES basics

In this first chapter of the user’s manual, we assume that the GLoBES software is readily
installed on your computer system. For the installation, see Appendix A and the INSTALL

file in the software package. We demonstrate how to load pre-defined experiments and
introduce the basic concepts of GLoBES. We do not go into details of the programming
language, which means that standard parts of the program code common to all of the
examples in the following chapters are, in general, omitted. An example of a minimal
GLoBES program in C can be found on page 14. Furthermore, the files of the examples
in this part can be found in the example subdirectory of your GLoBES distribution. After
the installation of GLoBES, they can be compiled using the Makefile in the examples

directory. The Makefile has been correctly setup by the configure script to take into
account details of the installation on your system. Thus you’ve just to type make and
you’re done.1 This Makefile very well serves as a template for your own applications.

We will in this part not go into details of the experiment definition. The pre-defined
experiment prototypes in the data subdirectory are summarized in Table 2.1 and de-
scribed in Appendix B. They correspond (except from minor modifications) to the exper-
iments in the respective references in the table. These files are installed to the directory
${prefix}/share/globes which usually defaults to /usr/local/share/globes. It is use-
ful to add this path to the value of GLB_PATH.

2.1 Initialization of GLoBES

Before one can use GLoBES, one has to initialize the GLoBES library :

Function 2.1 void glbInit(char *name) initializes the library libglobes and has to
be called in the beginning of each GLoBES program. It takes the name name of the program
as a string to initialize the error handling functions. In many cases, it is sufficient to use
the first argument from the command line as the program name (such as in the example
on page 14).

1The data files (AEDL and supporting files) needed by the examples are already in place.

14 CHAPTER 2. GLoBES basics

Example: Using GLoBES with C

Here comes the C-code skeleton, which is (more or less) common to all of our GLoBES
examples:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include <globes/globes.h> /* Include GLoBES library */

#include "myio.h" /* Include "housemade" I/O-routines */

/* If filename given, write to file; if empty, to screen: */

char MYFILE[]="testX.dat";

int main(int argc, char *argv[])

{

glbInit(argv[0]); /* Initialize GLoBES library */

glbInitExperiment("NFstandard.glb",&glb_experiment_list[0],

&glb_num_of_exps); /* Initialize experiment NFstandard.glb */

/* Initialize housemade output function */

InitOutput(MYFILE,"Format: \n");

/* Initialize parameter vector(s) */

glb_params true_values = glbAllocParams();

/* ... */

/* Assign: theta12,theta13,theta23,deltacp,dm2solar,dm2atm */

glbDefineParams(true_values,

asin(sqrt(0.8))/2,asin(sqrt(0.001))/2,M_PI/4,M_PI/2,7e-5,2e-3);

glbSetDensityParams(true_values,1.0,GLB_ALL); // Matter scaling

/* The simulated data are computed */

glbSetOscillationParameters(true_values);

glbSetRates();

/* ... CODE ... */

/* Free parameter vector(s) */

glbFreeParams(true_values);

/* ... */

exit(0);

}

2.1 Initialization of GLoBES 15

Experiment Filename Short description Ref.

Superbeam experiments:

T2K T2K.glb J-PARC to Super-K, 2 yr ν- and 6 yr ν̄-
running

[6, 7]

T2HK T2HK.glb J-PARC to Hyper-K, 4 yr ν- and 4 yr ν̄-
running (T2K upgrade)

[6, 7]

NOνA NOvA.glb FermiLab NuMI beamline off-axis, 3 yr ν-
and 3 yr ν̄-running

[8, 9]

SPL SPL.glb CERN to Fréjus, 2 yr ν- and 8 yr ν̄-running [10–12]

Reactor experiments:

Reactor-I Reactor1.glb Small reactor exp., L = 400 t GW yr [13]

Reactor-II Reactor2.glb Large reactor exp., L = 8 000 t GW yr [13]

DoubleChooz D-Chooz_near.glb Double Chooz near detector, 5 years data
taking

[14]

D-Chooz_far.glb Double Chooz far detector, 5 years data
taking

β-Beams:

Low γ BB_100.glb γ = 100 CERN to Fréjus baseline scenario,
4 yr ν- and 4 yr ν̄-running

[10]

Medium γ BB_350.glb γ = 350, refurbished SPS scenario, 4 yr ν-
and 4 yr ν̄-running

[15]

Variable γ BBvar_WC.glb Variable β-beam, 4 yr ν- and 4 yr
ν̄-running, AEDL-Variables gammafactor,
EXP_FACTOR and baselinefactor, 500 kt
WC detector

[16]

BBvar_TASD.glb As BBvar_WC.glb, but with a 50 kt TASD [16]

Neutrino factories:

Standard NFstandard.glb Standard neutrino factory, 4 yr ν- and 4 yr
ν̄-running

[7]

Variable Eµ NFvar.glb Variable Eµ neutrino factory, 4 yr ν- and
4 yr ν̄-running, AEDL-Variables emax and
BASELINE, disapp. channels without CID

[7,17]

Gold + Silver NF_GoldSilver.glb As NFvar.glb, plus 5 kt ECC detector for
Silver Channel measurement

[7, 17,18]

Hybrid det. NF_hR_lT.glb As NFvar.glb, but lower threshold and
higher energy resolution

[7, 17]

Table 2.1: Pre-defined experiment prototypes, their filenames (to be used in glbInitExperiment), their
short descriptions, and the references in which they are originally used and discussed (except from minor
modifications, such as a different implementation of the energy threshold function). Note that some of
these experiments may want to be adjusted in terms of integrated luminosity, baseline, flux, efficiencies,
or other factors. In any case these file are installed along with GLoBES. For more details, see Appendix B.

16 CHAPTER 2. GLoBES basics

In principle, the GLoBES user interface can currently handle up to 32 of different long-
baseline experiments simultaneously, where the number of existing experiment definition
files can, of course, be unlimited. Note that each experiment assumes a specific matter den-
sity profile, which means that it makes sense to simulate different operation modes within
one experiment definition, and physically different baselines, in different definitions. For
details of the rate computation and simulation techniques, we refer at this place to Part II.
Though the simplest case of simulating one experiment may be most often used, using
several experiments is useful in many cases. For example, combinations of experiments can
be tested for complementarity and competitiveness by equal means within one program.
In general, many GLoBES functions take the experiment number as a parameter, which
runs from 0 to glb_num_of_exps-1 in the order of their initialization in the program.2 In
addition, using the parameter value GLB_ALL as experiment number (for example, in the
glbChi... functions) initiates a combined analysis of all loaded experiments.

For storing the experiments, GLoBES uses the initially empty list of experiments
glb_experiment_list. To add a pre-defined experiment to this list, one can use the
function glbInitExperiment:

Function 2.2 int glbInitExperiment(char *infile, glb_exp *ptr, int

*counter) adds a single experiment with the filename infile to the list of cur-
rently loaded experiments. The counter is a pointer to the variable containing the number
of experiments, and the experiment ptr points to the beginning of the experiment list. The
function returns zero if it was successful.

Normally, a typical call of glbInitExperiment is

glbInitExperiment("NFstandard.glb",&glb_experiment_list[0],

&glb_num_of_exps);

In this case, the experiment in the file NFstandard.glb is added to the internal global
list of experiments, and the experiment counter is increased. The experiment then has the
number glb_num_of_exps-1. The elements of the experiment list have the type glb_exp,
which the user will not need to access directly in most cases. The experiment definition
files, which usually end with .glb, and any supporting files, are first of all searched in the
current directory, and then in the path given in the environment variable GLB_PATH.

A list of pre-defined experiment prototypes, their filenames, their short descriptions,
and the references of their definitions can be found in Table 2.1; for more details, see
Appendix B. If the program cannot find these files, or some of them are syntactically not
correct, it will break at this place.

One can also remove all experiments from the evaluation list at running time:

Function 2.3 void glbClearExperimentList() removes all experiments from the inter-
nal list and resets all counters.

2Note that the global variable glb_num_of_exps must not be modified by the user.

2.2 Units in GLoBES and the integrated luminosity 17

Quantities Examples Units
Angles θ13, θ12, θ23, δCP Radians
Mass squared differences ∆m2

21, ∆m2
31 eV2

Matter densities ρi g/cm3

Baseline lengths Li km
Energies Eν GeV
Fiducial masses mDet t (reactor exp.) or kt (accelerator exp.),

depends on experiment definition
Time intervals trun yr
Source powers PSource Useful parent particle decays/yr

(Neutrino factory, β-Beam),
GW thermal power (reactor exps.),
or MW target power (superbeams);
depends on flux definition

Cross sections/E σCC/E 10−38 cm2/GeV2

Table 2.2: Quantities used in GLoBES, examples of these quantities, and their standard units in the
application software.

Note that changing the number of experiments requires a new initialization of all parame-
ters of the types glb_params and glb_projection if the number of experiments changes,
since these parameter structures internally carry lists for the matter densities of all experi-
ments. Similarly, once should never call glbAlloc... before the experiment initialization.

2.2 Units in GLoBES and the integrated luminosity

While interacting with the user interface of GLoBES, parameters are transferred to and from
the GLoBES library. In GLoBES, one set of units for each type of quantity is used in order
to avoid confusion about the definition of individual parameters. Table 2.2 summarizes
the units of the most important quantities. In principle, the event rates are proportional
to the product of source power × target mass × running time, which we call “integrated
luminosity”. Since especially the definition of the source power depends on the experiment
type, the quantities of the three luminosity components are not unique and depend on the
experiment definition. Usually, one uses detector masses in kilotons for beam experiments,
and detector masses in tons for reactor experiments. Running times are normally given
in years, where it is often assumed that the experiment runs 100% of the year. Thus, for
shorter running periods, the running times need to be renormalized. Source powers are
usually useful parent particle decays per year (neutrino factories, β-beams), target power
in mega watts (superbeams), or thermal reactor power in giga watts (reactor experiments).
Since the pre-defined experiments in Table 2.1 are given for specific luminosities, it is useful
to read out and change these parameters of the individual experiments:

18 CHAPTER 2. GLoBES basics

Function 2.4 void glbSetSourcePower(int exp, int fluxno, double power) sets
the source power of experiment number exp and flux number fluxno to power. The defi-
nition of the source power depends on the experiment type as described above.

Function 2.5 double glbGetSourcePower(int exp, int fluxno) returns the source
power of experiment number exp and flux number fluxno.

Function 2.6 void glbSetRunningTime(int exp, int fluxno, double time) sets
the running time of experiment number exp and flux number fluxno to time years.

Function 2.7 double glbGetRunningTime(int exp, int fluxno) returns the running
time of experiment number exp and flux number fluxno.

Function 2.8 void glbSetTargetMass(int exp, double mass) sets the fiducial detec-
tor mass of experiment number exp to mass tons or kilotons (depending on the experiment
definition).

Function 2.9 double glbGetTargetMass(int exp) returns the fiducial detector mass of
experiment number exp.

Thus, these functions also demonstrate how to use the assigned experiment number and
others. These numbers run from 0 to the number of experiments-1, fluxes-1, etc., where the
individual elements are numbered in the order of their appearance. Note that the source
power and running time are quantities defined together with the neutrino flux, whereas the
target mass scales the whole experiment. Thus, if one has, for instance, a neutrino and an
antineutrino running mode, one can scale them independently.

2.3 Handling oscillation parameter vectors

Before we can set the simulated event rates or access any oscillation parameters, we need
to become familiar with the concept GLoBES uses for oscillation parameters. In order to
transfer sets of oscillation parameter vectors (θ12, θ13, θ23, δCP,∆m

2
21,∆m

2
31) as well as some

other information, the parameter type glb_params is used. In general, this type is often
transferred to and from GLoBES functions. Therefore, the memory for these vectors has to
be reserved (allocated) before they can be used, and it has to be returned (freed) afterwards.
GLoBES functions usually use pointers of the type glb_params for the input or output to
the functions. As an input parameter, the pointer has to be initialized with the address of
a valid parameter structure, where the oscillation parameters are read from. As an output
parameter, it has to be initialized with the address of a structure which the return values
will be written to. This parameter transfer concept seems to be very sophisticated, but, as
we will see in the next chapters, it hides a lot of complicated parameter mappings which
otherwise need to be done by the user. For example, not only the oscillation parameters
are stored in the glb_params structure, but also information on the matter densities of all

2.3 Handling oscillation parameter vectors 19

of the initialized experiments. Since GLoBES treats the matter density as a free parameter
known with some external precision to include matter density uncertainties, the minimizers
also use fit values and external errors for the matter densities of all loaded experiments.
More precisely, the matter density profile of each experiment i is multiplied by a scaling
factor ρ̂i, which is stored in the density information of glb_params. For a constant
matter density, it is simply the ratio of the matter density and the average matter density
specified in the experiment definition, i.e., ρ̂i ≡ ρi/ρ̄i. For a matter density profile, it
acts as an overall normalization factor: The matter density in each layer is multiplied by
this factor. In most cases one wants to take a scaling factor of 1.0 here, which simply
means taking the matter density profile as it is given in the experiment definition. For
the treatment of correlations, however, an external precision of the scaling factor might
be used to include the correlations with the matter density uncertainty. Note that the
glb_params structures must not be initialized before all experiments are loaded, since the
number of matter densities can only be determined after the experiments are initialized.
Similarly, any change in the number of experiments requires that the parameter structures
be re-initialized, i.e., freed and allocated again.

Another piece of information that will be returned from the minimizers (cf., Chapter 4)
and transferred into the glb_params structure is the number of iterations used for the
minimization, which is proportional to the running time of the minimizer. In general, the
user does not need to access the elements in glb_params directly. A number of functions
is provided to handle these parameter structures:

Function 2.10 glb_params glbAllocParams() allocates the memory space needed for a
parameter vector and returns a pointer to it. All parameter values are initially set to nan

(not a number).

Function 2.11 void glbFreeParams(glb_params stale) frees the memory needed for
a parameter vector stale and sets the pointer to NULL.

Function 2.12 glb_params glbDefineParams(glb_params in, double theta12,

double theta13,double theta23, double delta, double dm21, double dm31) as-
signs the complete set of oscillation parameters to the vector in, which has to be allocated
before. The return value is the pointer to in if the assignment was successful, and NULL

otherwise.

Function 2.13 glb_params glbCopyParams(const glb_params source, glb_params

dest) copies the vector source to the vector destination. The return value is NULL if
the assignment was not successful.

Function 2.14 void glbPrintParams(FILE *stream, const glb_params in) prints
the parameters in in to the file stream. The oscillation parameters, all density values,
and the number of iterations are printed as pretty output. Use stdout for stream if you
want to print to the screen.

20 CHAPTER 2. GLoBES basics

In addition to these basic functions, there are functions to access the individual parameters
within the parameter vectors:

Function 2.15 glb_params glbSetOscParams(glb_params in, double osc, int

which) sets the oscillation parameter which in the structure in to the value osc. If the
assignment was unsuccessful, the function returns NULL.

Function 2.16 double glbGetOscParams(glb_params in, int which) returns the
value of the oscillation parameter which in the structure in.

In both of these functions, the parameter which runs from 0 to 5 (or the number of
oscillation parameters-1), where the parameters in GLoBES always have the order θ12,
θ13, θ23, δCP, ∆m2

21, ∆m2
31. Alternatively to the number, the constants GLB_THETA_12,

GLB_THETA_13, GLB_THETA_23, GLB_DELTA_CP, GLB_DM_21, or GLB_DM_31 can be used.
Similarly, the density parameters or number of iterations (returned by the minimizers)

can be accessed:

Function 2.17 glb_params glbSetDensityParams(glb_params in, double dens,

int which) sets the density parameter which in the structure in to the value dens. If the
assignment was unsuccessful, the function returns NULL. If GLB_ALL is used for which, the
density parameters of all experiments will be set accordingly.

Function 2.18 double glbGetDensityParams(glb_params in, int which) returns
the value of the density parameter which in the structure in.

Function 2.19 glb_params glbSetIteration(glb_params in, int iter) sets the
number of iterations in the structure in to the value iter. If the assignment was
unsuccessful, the function returns NULL.

Function 2.20 int glbGetIteration(glb_params in) returns the value of the number
of iterations in the structure in.

In total, the parameter vector handling in a program normally has the following order:

glbInitExperiment(...);

/* ... more initializations ... */

glb_params vector1 = glbAllocParams();

/* ... more vectors allocated ... */

/* Program code: assign and use vectors */

glbFreeParams(vector1);

/* ... more vectors freed ... */

/* ... end of program or glbClearExperimentList ... */

2.4 Computing the simulated data 21

2.4 Computing the simulated data

Compared to existing experiments, which use real data, future experiments use simulated
data. Thus, the true parameter values (or simulated parameter values) are used to calculate
the reference event rate vectors corresponding to the simulated experiment result. After
setting the true parameter values, the fit parameter values can be varied in order to obtain
information on the measurement performance for the given set of true parameter values.
Therefore, it is often useful to show the results of a future measurement as function of
the true parameter values for which the reference rate vectors are computed – at least
within the currently allowed ranges. The true parameter values for the vacuum neutrino
oscillation parameters have to be set by the function glbSetOscillationParameters, and
the reference rate vector, i.e. the data, has to be computed by a call to glbSetRates. This
has to be done before any evaluation function is used and after the experiments have been
initialized and also the experiment parameters have been adjusted which could change the
rates (such as baseline or target mass). This means that after any change of an experiment
parameter, glbSetRates has to be called. Matter effects are automatically included as
specified in the experiment definition. We have the following functions to assign and read
out the vacuum oscillation parameters:

Function 2.21 int glbSetOscillationParameters(const glb_params in) sets the
vacuum oscillation parameters to the ones in the vector in.

Function 2.22 int glbGetOscillationParameters(glb_params out) returns the vac-
uum oscillation parameters in the vector out. The result of the function is 0 if the call was
successful.

The reference rate vector is then computed with:

Function 2.23 void glbSetRates() computes the reference rate vector for the neutrino
oscillation parameters set by glbSetOscillationParameters.

A complete example for a minimal GLoBES program can be found on Page 14.

2.5 Version control and debugging

In order to keep track of the used version of GLoBES, the software provides a number of
functions to check the GLoBES and experiment versions. It is up to the user to implement
mechanisms into the program and AEDL files to check whether

• The program should only run with this specific version of GLoBES.

• The program can only run up to a certain GLoBES version.

• The program can only run with a minimum version of GLoBES.

22 CHAPTER 2. GLoBES basics

• The program and AEDL file versions are compatible.

However, note that GLoBES 3.0 and higher requires that the GLoBES version be at least
as new as the version the AEDL file was written for. The functions in GLoBES for version
control are:

Function 2.24 int glbTestReleaseVersion(const char *version) returns 0 if the
version string of the format “X.Y.Z” is exactly the used GLoBES version, 1 if it is older,
and −1 if it is newer.

Function 2.25 const char* glbVersionOfExperiment(int experiment) returns the
version string of the experiment number experiment (set by $version in AEDL). The
version string is allocated within the experiment structure, which means that it cannot be
altered and must not be freed by the user.

A useful function to debug GLoBES source code is

Function 2.26 int glbSetVerbosityLevel(int level) sets the verbosity level for
GLoBES messages.

The following verbosity levels are currently used:

0 Display no messages

1 (Standard) Display error messages

2 Display warnings

3 Display file access history

4 Display search paths

Note that always messages with the chosen verbosity level and lower are displayed.

23

Chapter 3

Calculating χ2 with systematics only

Calculating a χ2-value including systematics, but without correlations and degeneracies,
is the simplest and fastest possibility to obtain high-level information on an experiment.
Here we describe the use of built-in systematics, and the rather advanced topic of user-
defined systematics. Note that the matter density is treated as an oscillation parameter in
GLoBES, which means that it is not dealt with at the systematics level.

3.1 Built-in systematics

Keeping all oscillation parameters and matter density scaling factors fixed, one can use
the following builtin functions to obtain the total χ2 of all specified oscillation channels
including systematics:

Function 3.1 double glbChiSys(const glb_params in,int exp, int rule) returns
the χ2 for the (fixed) oscillation parameters in, the experiment number exp, and the rule
number rule. For all experiments or rules, use GLB_ALL as parameter value.

Note that the result of glbChiSys for all experiments or rules corresponds to the sum of
all of the individual glbChiSys calls. This equality will not hold for the minimizers in the
next chapters anymore. An example how to use glbChiSys can be found on page 24.

The treatment of systematics in GLoBES is performed by the so-called pull method with
the help of nuisance systematics parameters. They are taken to be completely uncorrelated
among different rules, and treated with simple Gaußian statistics. In general, a rule is a
prescription for summing up experimentally indistinguishable signal and background events
from different oscillation channels. For more details on the rule concept, see Part II of this
manual, and for the treatment of systematics, see Sec. 11.6.

One example for a systematics parameter is the signal normalization error, i.e., an error
on the overall normalization of the signal. For illustration, we assume that the signal event
rate in the ith bin s0

i of one oscillation channel is altered by the overall normalization
nuisance parameter of this channel, i.e.,

si = si(ns) = s0
i · (1 + ns), (3.1)

24 CHAPTER 3. Calculating χ2 with systematics only

Example: Correlation between sin2 2θ13 and δCP

A typical and fast application for glbChiSys is the visualization of two-parameter
correlations using systematics only. For example, to calculate the two-parameter cor-
relation between sin2 2θ13 and δCP at a neutrino factory, one can use the following code
excerpt from example1.c:

/* Initialize parameter vector(s) and compute simulated data */

glbDefineParams(true_values,theta12,theta13,theta23,deltacp,sdm,ldm);

glbSetDensityParams(true_values,1.0,GLB_ALL);

glbCopyParams(true_values,test_values);

glbSetOscillationParameters(true_values); glbSetRates();

/* Iteration over all values to be computed */

for(x=-4.0;x<-2.0+0.01;x=x+2.0/50)

for(y=0.0;y<200.0+0.01;y=y+200.0/50)

{

/* Set parameters in vector of test values */

glbSetOscParams(test_values,asin(sqrt(pow(10,x)))/2,GLB_THETA_13);

glbSetOscParams(test_values,y*M_PI/180.0,GLB_DELTA_CP);

/* Compute Chi2 for all loaded experiments and all rules */

res=glbChiSys(test_values,GLB_ALL,GLB_ALL);

AddToOutput(x,y,res);

}

The resulting data can then be plotted as a contour plot (2 d.o.f.):

10
-4

10
-3

10
-2

sin
2

2Θ13

0

50

100

150

200

∆
C

P
@D

eg
re

es
D

1Σ

2Σ

3Σ

GLoBES 2007

3.2 User-defined systematics calculation∗ 25

where ns is the signal normalization parameter. The total number of events in the ith bin
xi also includes the background event rates bi, i.e., xi = si + bi, which may have their
own systematics parameters. In order to implement an overall signal normalization error
σns , the χ2, which includes all event rates xi of all bins, is minimized over the nuisance
parameter ns:

χ̂2 = min
ns

(
χ2(ns, . . .) +

(ns)
2

σ2
ns

)
. (3.2)

This minimization is done independently for all nuisance parameters of the rule. The total
χ2 for the considered experiment is finally obtained by repeating this procedure for all
rules and adding their χ2-values. In general, the situation is more complicated because of
the usage of many systematical errors. More details about systematics parameters and the
definition of signal, background, and oscillation channels can be found in Sec. 11.6, too.

The systematics minimization of an experiment can be easily switched on and off with
glbSwitchSystematics, i.e., one can also compute the χ2 with statistics only. In addition,
several options for systematics are available, such as only using total event rates without
spectral information. For details, we refer to Chapter 7.

3.2 User-defined systematics calculation∗

For some experimental setups, the built-in systematics functions are not sufficient because
they cannot handle systematical errors that are correlated between different parts of a
multi-detector setup. Therefore GLoBES allows the user to override the default χ2 calcula-
tion. The reader who wants to use this feature should be familiar with Secs. 6.3, 7.1, 11.4,
and 11.6 of the manual. Note that this is an advanced topic, which requires GLoBES 3.0
or higher. It can be omitted in a first reading of the manuscript.

User-defined systematics is, compared to the built-in systematics, a compound between
the AEDL definition and some source code defining the behavior. In the simplest case, the
AEDL file defines user-defined systematics for a specific rule, gives it a name/identifier, and
defines the systematical errors. The source code has then to match this AEDL definition –
therefore, make sure to use only unique identifiers. Ones needs to register the user-defined
systematics in the source code (typically after glbInit) with

Function 3.2 int glbDefineChiFunction(glb_chi_function chi_func, int dim,

const char *name, void* user_data) tells GLoBES to register the user-defined system-
atics χ2 function chi_func identified by the string name with dim systematics parameters.
The parameter user_data is an arbitrary pointer being transferred to chi_func. It can,
for instance, be used to avoid global variables. Returns zero, if successful.

The user-defined systematics function itself has to have the pre-defined type

Function 3.3 double (*glb_chi_function)(int exp, int rule, int dim, double

*params, double *errors, void* user_data). In this function type, exp is the
experiment number, rule is the rule number, dim is the number of systematics parameters,

26 CHAPTER 3. Calculating χ2 with systematics only

Example: Systematics for a reactor setup with near and far detector

The following code fragment from the much more extensive example5.c calculates
χ2 for a reactor setup with two detectors including five different systematical errors:
the flux normalization of the reactor (x[0]), the fiducial mass uncertainties of the
far (x[1]) and near (x[2]) detector, and energy calibration errors for the far (x[3])
and near (x[4]) detectors. The calculation follows Eq. (3.3), but includes the energy
calibration.

double likelihood(double true_rate, double fit_rate, double sqr_sigma)

{ if (sqr_sigma > 0) return square(true_rate - fit_rate) / sqr_sigma;

else return 0.0; }

double chiDCNorm(int exp, int rule, int np, double *x, double *errors,

void* user_data)

{

const EXP_FAR = 0; const EXP_NEAR = 1;

int n_bins = glbGetNumberOfBins(EXP_FAR);

double *true_rates_N = glbGetRuleRatePtr(EXP_NEAR, 0);

double *true_rates_F = glbGetRuleRatePtr(EXP_FAR, 0);

double signal_fit_rates_N[n_bins]; double signal_fit_rates_F[n_bins];

double signal_norm_N, signal_norm_F;

int ew_low, ew_high, i;

double emin, emax, fit_rate; double chi2 = 0.0;

/* Request simulated energy interval and analysis energy window */

glbGetEminEmax(exp, &emin, &emax);

glbGetEnergyWindowBins(exp, rule, &ew_low, &ew_high);

/* Apply energy calibration error */

glbShiftEnergyScale(x[3], glbGetSignalFitRatePtr(EXP_FAR, 0),

signal_fit_rates_F, n_bins, emin, emax);

glbShiftEnergyScale(x[4], glbGetSignalFitRatePtr(EXP_NEAR, 0),

signal_fit_rates_N, n_bins, emin, emax);

/* Loop over all bins in energy window */

signal_norm_F = 1.0 + x[0] + x[1];

signal_norm_N = 1.0 + x[0] + x[2];

for (i=ew_low; i <= ew_high; i++)

{

/* Statistical part of chi2 for far detector */

fit_rate = signal_norm_F * signal_fit_rates_F[i];

chi2 += likelihood(true_rates_F[i], fit_rate, true_rates_F[i]);

/* Statistical part of chi2 for near detector */

fit_rate = signal_norm_N * signal_fit_rates_N[i];

chi2 += likelihood(true_rates_N[i], fit_rate, true_rates_N[i]);

}

/* Systematical part of chi2 (= priors) */

for (i=0; i < np; i++) chi2 += square(x[i]/errors[i]);

return chi2;

}

3.2 User-defined systematics calculation∗ 27

params is an array of the systematics nuisance parameters themselves, and errors is
an array with the systematical errors. The parameter user_data is set as defined with
glbDefineChiFunction. Note the the central values for params are 0, which means that
0 corresponds to the un-modified rates. The array indices run from 0 to dim-1.

Note that this function will be called many times by the GLoBES minimizers. Therefore
the function should be as efficient as possible. In addition, note that complicated sys-
tematics with many parameters may introduce complicated (unknown) topologies for the
minimization, which means that the minimizers may end up in a local minimum instead
of the global minimum. GLoBES provides the function glbSetSysStartingValuesList

to change the starting values of the minimizer in the case of convergence problems (see
below). A typical implementation may look like the following code, where “chiDCNorm” is
the identifier assigned in the AEDL definition:

double chiDCNorm(int exp, int rule, int dim, double *x,

double *errors, void* user_data)

{

double chi2 = 0.0;

int i;

... /* Some code to calculate the chi2 */

/* Here the systematics priors (penalties) are added: */

for(i=0;i<dim;i++) chi2 += (x[i]*x[i])/(errors[i]*errors[i]);

return chi2;

}

int main(int argc,char*argv[])

{

...

glbInit(agrv[0]);

glbDefineChiFunction(&chiDCNorm,5,"chiDCNorm",NULL);

...

}

During running time, the systematics can be changed with glbSetChiFunction and
glbGetChiFunction as described in Sec. 7.1. In addition, especially useful in the context
of user-defined systematics, a pointer to the systematics function can be returned either
by name, or by experiment and rule selection:

Function 3.4 glb_chi_function glbGetChiFunctionPtr(const char *name) returns
a pointer to the systematics χ2 function with a specified name name.

28 CHAPTER 3. Calculating χ2 with systematics only

Function 3.5 glb_chi_function glbGetChiFunctionPtrInExperiment(int exp,

int rule, int on_off) returns a pointer to the systematics χ2 function of experiment
exp and rule rule. Systematics on or off can be accessed by on_off.

The user-defined χ2 function of type glb_chi_function may use a number of helper
functions for for the χ2 calculation. A very useful function to include energy calibration
errors is

Function 3.6 glbShiftEnergyScale(double b, double *rates_in, double

*rates_out,int bins, double emin, double emax) shifts the energy scale in rates_in

by the relative amount b and stores the result in rates_out. The parameters emin and
emax denote the minimal and maximal energy as obtained with glbGetEminEmax. Requires
constant energy bin widths!

For details on energy calibration errors, see Sec. 11.6. In addition, in order to imple-
ment user-defined systematics, one usually needs low-level access to the event rate vectors
using glbGetRuleRatePtr, glbGetSignalFitRatePtr, glbGetBGFitRatePtr and possi-
bly other functions described in Sec. 6.3. Additionally, the functions glbGetEminEmax,
glbGetEnergyWindow, glbGetEnergyWindowBins, and glbGetNumberOfBins from Sec. 6.2
are useful. We recommend that you familiarize yourself with these functions at this point.

Let us now discuss a simple example. Typical applications for user-defined systematics
are reactor neutrino experiments, where systematics play a crucial role. For a setup with
near and far detectors, the Gaussian formula for χ2 is

χ2 =

of bins∑
i=1

∑
d=N,F

(Od,i − (1 + aR + ad)Td,i)
2

Od,i

+
a2
R

σ2
R

+
a2
N

σ2
N

+
a2
F

σ2
F

(3.3)

where ON,i and OF,i are the event rates for the i-th bin in the near and far detector, cal-
culated for the assumed “true” values of the oscillation parameters. Td,i are the event rates
for the parameter values that are currently being tested. aR, aN and aF parameterize the
small uncertainties in the reactor flux and the fiducial mass of the two detectors. In this
example, their central values are assumed to be zero, while their standard deviations are
σR, σN and σF . The first line of Eq. (3.3) is the standard χ2 expression for the Gauss
distribution, while the terms in the second line are penalties for deviations of the system-
atics parameters from their central values. We use two AEDL files for this experiment, one
for the far detector and one for the near detector. The corresponding rule definition (νe
disappearance) in the far detector AEDL-file is

rule(#rule0)<

@signal = 1.0@#nu_e_disappearance_CC

@background = 0.0@#nu_e_disappearance_CC /* No background */

@energy_window = 0.0015 : 0.01

@sys_off_function = "chiNoSysSpectrum"

3.2 User-defined systematics calculation∗ 29

101 102 103 104 105

Integrated Luminosity in Far Detector @GW×t×yearsD

0.002

0.005

0.01

0.02

0.05

0.1

si
n

2
2
Θ

1
3

se
n
si

ti
v
it

y
at

9
0
%

C
.L

.

Statistical Lim
it

5
y
ea

rs
D

C

1
0

y
ea

rs
D

C

5
y
ea

rs
D

C
+

5
y
ea

rs
T

C

Σcorr = 2.8%
Σuncorr = 0.6%
Σcal = 0.5%

Σshape = 2.0%

Σbin-to-bin = 0.5%

Σbin-to-bin = 2.0%

GLoBES 2007

Figure 3.1: The result from example5.c (figure similar to the one in Ref. [14]). The thick curve
corresponds to the systematics on page 26.

@sys_off_errors = { }

@sys_on_function = "chiDCNorm"

@sys_on_errors = { 0.028, 0.006, 0.006, 0.005, 0.005 }

// { Flux, Fid. mass FD, Fid. mass ND, Energy FD, Energy ND }

>

In this case, the systematics is called “chiDCNorm” for systematics on, whereas systematics
off is computed with spectral information, but without systematical errors. For the near
detector AEDL-file, we have instead

rule(#rule0)<

@signal = 1.0@#nu_e_disappearance_CC

@background = 0.0@#nu_e_disappearance_CC /* No background */

@energy_window = 0.0015 : 0.01

@sys_off_function = "chiNoSysSpectrum"

@sys_off_errors = { }

@sys_on_function = "chiZero"

@sys_on_errors = { }

>

30 CHAPTER 3. Calculating χ2 with systematics only

In this case, the systematics chiZero is used for systematics on, which means that there will
be no active χ2 calculation in this rule. With this definition, the user-defined systematics
will only be called once for the far detector. However, the rates from the near detector
will be passively provided for the common χ2 function. You can find the corresponding
files dchooz-near.glb and dchooz-far.glb you will need for example5.c, in the example
directory. We show the implementation of the χ2 function in the example on page 26,
where we in addition include an uncorrelated energy calibration error. See Fig. 3.1 for the
result of this example.

In cases where the systematics minimization does not converge fast enough or ends up
in a local minimum, one can change the starting values of the minimizer, i.e., the starting
point from which the local minimizer rolls into the local minimum.

Function 3.7 int glbSetSysStartingValuesList(int exp, int rule, int

on_off, const double *sys_list) sets the starting values of the local systematics
minimizer in experiment exp and rule rule to the values in sys_list. This change can be
performed for systematics on or systematics off by using GLB_ON or GLB_OFF for on_off.
Usually, zero is used for all starting values.

Function 3.8 double *glbGetSysStartingValuesListPtr(int exp, int rule, int

on_off, const double *sys_list) returns the starting values of the local systematics
minimizer in experiment exp and rule rule. This list can be obtained for systematics on
or systematics off by using GLB_ON or GLB_OFF for on_off.

A useful trick is often to use the minimum from the last run as starting values for the next
one if the input parameters are only slightly changed. One can obtain the minimum from
the last run from the last call of the χ2 function (cf., example5.c).

31

Chapter 4

Calculating χ2-projections: how one
can include correlations

This chapter deals with the rather complicated issue of n-parameter correlations. It is
one of the greatest strengths of this software to include the full n-parameter correlation
in the high-dimensional parameter space with reasonable effort. Of course, calculating χ2-
projections is somewhat more complicated than using systematics only. Therefore, we use
a simple step by step introduction to the problem.

4.1 Introduction

In principle, the precision of an individual parameter measurement including correlations
in the χ2-approach can be obtained as the projection of the n-dimensional fit manifold onto
the respective axis. Similarly, one can project the fit manifold onto a plane, such as the
sin2 2θ13-δCP-plane, if one wants to show the allowed region in this plane with all the other
parameter correlations included. In practice, this projection (or marginalization) is very
difficult: a grid-based method would need (Ngrid)n function calls of glbChiSys to calculate
the projection onto one dimension including the full n-parameter correlation, where Ngrid is
the number of points in each direction of the lattice. For example, taking only Ngrid = 20
and n = 7 (six oscillation parameters and matter density) would mean more than one
billion function calls of glbChiSys. One can easily imagine that these would be too many
for any reasonable application.

The solution to this problem is using a n-dimensional, local minimizer for the projection
instead of a grid-based method, where we will illustrate this minimization process later.
It turns out that such a minimizer can include a full 6-parameter correlation with of the
order of 1 000 function calls of glbChiSys. For the minimization we use a derivative free
method due to Powell in a modified [19] version1.

1Not to need derivatives is highly desired, since the event rate depends in a non-linear way on the
oscillation parameters. Thus, there is no easy analytical way to obtain derivatives of the χ2 function.

32 CHAPTER 4. Calculating χ2-projections: how one can include correlations

Thus, for each point on the projection axis/plane, one can obtain a result within several
seconds on a modern computer, which means that the complete measurement precision for
one fixed true parameter set can be obtained in a few minutes. One can easily imagine that
such a minimizer makes more sophisticated applications possible with the help of overnight
calculations, such as showing the dependencies on the true parameter values.

This approach also has one major disadvantage: There is no such thing as a global
minimization algorithm or even an algorithm which guarantees to find all local minima
of a function. In practice this means using a local minimizer, one may end up in an
unwanted local minimum and not in the investigated (possibly global) one or one may
miss a local minimum which affects the results2. The only way out of this dilemma is
to use some heuristic approach, i.e., one can use schemes which work in most cases and
announce their failure loudly. In order to use such a heuristic some (analytical or numerical)
knowledge on the topology of the fit manifold is necessary. With this knowledge it is
possible to obtain an approximate position for each local minimum and thus to start the
local minimizer close enough to the investigated minimum. Fortunately, this can be done
quite straightforwardly in most cases, since the structure of the neutrino oscillation formulas
does not cause very complicated topologies of the fit manifolds. Especially the simulation
of reactor experiments and conventional beams or superbeams is rather simple with purely
numerical approaches. Neutrino factories have, especially for small values of θ13, a much
more complicated topology. In this case, results of the many analytical discussions of this
issue can be used. This means that one can implicitly use the analytical knowledge to
obtain better predictions for the location of a minimum. One can easily imagine that the
used methods then also depend on the region of the parameter space. In this manual,
we mainly use examples with a neutrino factory, since some of these complications can be
illustrated there. Note that the methods described here are neither complete, nor will they
work everywhere in the parameter space. It is in any case up to the user to make sure that
the results are what he/she thinks.

Some more words of warning with respect to results obtained by projecting the χ2: The
results obtained this way are always only an upper bound on the value of the projected χ2

function, i.e. an undiscovered minimum decreases the value of the the projected χ2 function.
If the value of the χ2 function in the missed minimum is larger than the previously found
ones it will not influence the value of the projected value. Thus, one can only run the danger
to obtain a too optimistic solution if one does not find the other local minima appearing
below the chosen confidence level. With this approach and proper usage, it should not be
possible to produce a too pessimistic solution. However, if one is not careful enough to
locate all local minima, one can easily produce too optimistic solutions. This danger can
be summarized as follows:

Too pessimistic result < Real result︸ ︷︷ ︸
Located by careful usage

≤ GLoBES result < Too optimisitic result

2NB – Implementing a grid-based method which guarantees to find all local minima is not straightfor-
ward either, to say the least.

4.2 The treatment of external input 33

In many cases, the fit manifold is restricted by the knowledge from earlier experiments.
For example, the knowledge on the solar parameters will in most cases be supplied by the
solar neutrino experiments. If, at the time of the measurement, the external precision of a
parameter is better than the one of the considered experiment itself, one usually will use
this better, external knowledge and impose a corresponding constraint on this parameter.
The external knowledge may reduce the extension of the n-dimensional fit manifold in the
respective direction. In the most extreme case, keeping all parameters but the measured
one fixed in the analysis is equivalent to the assumption that all parameters are determined
externally with infinitively high precision. As this is quite a strong assumption, one should
always check the consequences of relaxing it and using realistic errors. Only if such a test
has demonstrated that the impact of the uncertainty on a given fit parameter is negligible,
it can safely be assumed as fixed. The inclusion of external input in GLoBES is done by
the use of Gaußian priors: We assume that an external measurement has determined the
measured parameter to be at the central value with a 1σ Gaußian error (which we call
input error). The explicit definition of these priors will be shown in the next section.

4.2 The treatment of external input

It is one of the strengths of the GLoBES software to use external input in order to reduce
the extension of the fit manifold with the knowledge from external (earlier) measurements.
The treatment of external input is done by the addition of Gaußian so-called priors to the
systematics-minimized χ2-function. For example, for the matter density, one obtains as
the final projected χ2

F after minimization over the matter density scaling factor ρ̂

χ2
F = min

ρ

(
χ2(ρ̂) +

(ρ̂− ρ̂0)2

σ2
ρ̂

)
. (4.1)

This example is a very simple one, since in fact the minimization is simultaneously per-
formed over all priors and free oscillation parameters. In Eq. (4.1), ρ̂0 is the central value
of the prior, and σρ̂ the 1σ absolute (half width) input error. Thus, it is assumed that an
external measurement has determined the matter density with a precision (input error) σρ̂
at the central value ρ̂0. Usually, the central value is fixed at the best-fit value, and the
input error is chosen as the 1σ half width of the external measurement. For the matter
density, ρ̂0 is usually set to 1.0, corresponding to the actual matter density profile such as
given by the experiment definition file, and σρ̂ to the relative matter density uncertainty
(e.g., 0.05 for 5% uncertainty).

In principle, one can set the priors for the matter density and all oscillation parame-
ters. For example, if the disappearance channels of the experiment determine the leading
oscillation parameters with unprecedented precisions, one can omit the respective input
errors. In GLoBES, an input error value of 0 corresponds3 to neglecting the prior. If, how-
ever, earlier external measurements provide better information, one can set their absolute

3To be precise, a value for the error in between −10−12 and +10−12

34 CHAPTER 4. Calculating χ2-projections: how one can include correlations

precisions with the input errors. The central values are usually chosen to be the best-fit
values of this external experiments, such as for the input from solar experiments. In some
cases, it may be necessary to adjust them, such as for artificial constraints to the oscillation
parameters. For example, for the investigation of the opposite-sign solution, one can use
the prior to constrain ∆m2

31 in order to force the minimizer not to fall into the (unwanted)
true-sign solution. In this case, the central value of ∆m2

31 would be set to ρ0
∆m2

31
= −∆m2

31,

and a σ∆m2
31

of the order of ∆m2
31 would be imposed. For the algorithm, it would then be

rather difficult to converge into the unwanted true-sign solution. However, note that one
should in this case check that the actually determined value for ∆m2

31 after minimization
is close enough to the guessed value −∆m2

31 in order to avoid significant artifical contribu-
tions of the priors to the final χ2. Alternatively one could re-run the minimizer with the
position of the previously found minimum as starting position but now with switching off
the constraint on ∆m2

31.
In order to set the central values and input errors, two function have to be called before

the usage of any minimizer:

Function 4.1 int glbSetCentralValues(const glb_params in) sets the central val-
ues for all of the following minimizer calls to in.

Function 4.2 int glbSetInputErrors(const glb_params in) sets the input errors for
all of the following minimizer calls to in. An input error of 0 corresponds to not taking
into account the respective prior.

Accordingly, there are functions to return the actually set central values and input errors:

Function 4.3 int glbGetCentralValues(glb_params out) writes the currently set
central values to out.

Function 4.4 int glbGetInputErrors(glb_params out) writes the currently set input
errors to out.

All functions take or return as many matter density parameters as there are initialized
experiments. In addition, they return −1 if the operation was not successful.

Eventually, a typical initialization of the external input with 10% external precisions
for the solar parameters4, and 5% matter density uncertainties for all experiments looks
like this:

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,0);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetCentralValues(true_values);

glbSetInputErrors(input_errors);

4In fact, accelerator-based long-baseline experiments are primarily sensitive to the product sin 2θ12 ·
∆m2

21, which means that these errors effectively add up to an error of this product of about 15%.

4.3 Projection onto the sin2 2θ13-axis or δCP-axis 35

In this example, the central values are set to the true (simulated) values.
Though the priors are an elegant way to treat external input, there are also some

complications with priors. The following hints are for the more advanced GLoBES user:

1. The priors are only added once to the final χ2, no matter how many experiments
there are simulated. This is already one reason (besides the minimization) why the
sum of all projected χ2’s of the individual experiments cannot correspond to the χ2

of the combination of all experiments.

2. Priors are not used for parameters which are not minimized over, i.e., kept fixed.
This will be important together with arbitrary projections using glbChiNP. A more
subtle consequence is the comparison of fit manifold sections and projections for the
solutions where the absolute minimum χ2 is larger than zero, i.e., degeneracies other
than the true solution. In this case, the sections and projections are not comparable if
not corrected by the prior contributions, where the correction can be obtained as the
χ2-difference at the minimum. For example, projecting the sgn(∆m2

31)-degeneracy
onto the θ13-δCP-plane and comparing it with the section (all other parameters fixed),
the section region would in many cases be larger than the projection region if the
priors were not added to the section. At the true solution, this problem usually does
not occur because the prior contributions are close to zero.

3. Currently, GLoBES only supports Gaußian pre-defined priors for the individual oscil-
lation parameters. Especially for the solar parameters, this is only an approximation,
since they are imposed on θ12 and not on ∆m2

31 or sin2 θ12. GLoBES 3.0 and higher
provide an alternative to that by the concept of user-defined priors (cf., Sec. 4.5).

4.3 Projection onto the sin2 2θ13- or δCP-axis

The projection onto the sin2 2θ13- (or δCP-) axis is performed by fixing sin2 2θ13 (or δCP)
and minimizing the χ2-function over all free fit parameters and the matter densities. We
illustrate this method by the example of the projection of the two-dimensional manifold in
the sin2 2θ13-δCP-plane onto the sin2 2θ13-axis in Fig. 4.1. In this figure, the left-hand plot
shows the correlation in the sin2 2θ13-δCP-plane computed with glbChiSys. The right-hand
plot illustrates the projection of this two-dimensional manifold onto the sin2 2θ13 axis by
minimizing χ2 over δCP. In this simple example, the minimization is done along the vertical
gray lines in the left hand plot. The obtained minima are located on the thick gray curve,
which means that the right-hand plot represents the χ2-value along this curve. In fact, one
can easily see that one obtains the correct projected 3σ errors in this example (cf., arrows).
This figure illustrates the projection of a two-parameter correlation. In general, the full
n-parameter correlation is treated similarly by the simultaneous (local) minimization over
all free fit parameters.

The following functions are some of the simplest minimizers provided by GLoBES:

36 CHAPTER 4. Calculating χ2-projections: how one can include correlations

Example: Projection of two- and n-dimensional manifold onto sin2 2θ13-axis

This example demonstrates how to project the fit manifold onto the sin2 2θ13-axis, i.e.,
how one can include correlations. We compute two sets of data: one for keeping all pa-
rameters but δCP fixed (two-parameter correlation), and one for keeping all parameters
free (multi-parameter correlation). However, we impose external precisions for the solar
parameters and the matter density. The following code excerpt is from example2.c:

/* Set central values and input errors for all projections */

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,0);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetCentralValues(true_values); glbSetInputErrors(input_errors);

/* Define my own two-parameter projection for glbChiNP: Only deltacp is free! */

glbDefineProjection(th13_projection,GLB_FIXED,GLB_FIXED,GLB_FIXED,GLB_FREE,GLB_FIXED,GLB_FIXED);

glbSetDensityProjectionFlag(th13_projection,GLB_FIXED,GLB_ALL);

glbSetProjection(th13_projection);

/* Iteration over all values to be computed */

double x,res1,res2;

for(x=-4;x<-2.0+0.001;x=x+2.0/50)

{

/* Set fit value of stheta */

glbSetOscParams(test_values,asin(sqrt(pow(10,x)))/2,1);

/* Guess fit value for deltacp in order to safely find minimum */

glbSetOscParams(test_values,200.0/2*(x+4)*M_PI/180,3);

/* Compute Chi2 for user-defined two-parameter correlation */

res1=glbChiNP(test_values,NULL,GLB_ALL);

/* Compute Chi2 for full correlation: minimize over all but theta13 */

res2=glbChiTheta13(test_values,NULL,GLB_ALL);

AddToOutput(x,res1,res2);

}

The two lists of data then represent the sin2 2θ13 precisions with two-parameter corre-
lations (gray-shaded) and multi-parameter correlations (arrows):

10
-4

10
-3

10
-2

sin
2

2Θ13

0

5

10

15

20

Χ
2

1Σ

2Σ

3Σ

GLoBES 2007

(Same parameters as on page 24 and in Fig. 4.1, but 1 d.o.f.)

4.3 Projection onto the sin2 2θ13-axis or δCP-axis 37

10
-4

10
-3

10
-2

sin
2

2Θ13

0

50

100

150

200

∆
C

P
@D

eg
re

es
D

Correlation between sin
2

2Θ13 and ∆CP

1Σ
2Σ
3Σ

GLoBES 2007

10
-4

10
-3

10
-2

sin
2

2Θ13

0

5

10

15

20

Χ
2

Projection onto sin
2

2Θ13-axis

1Σ

2Σ

3Σ

GLoBES 2007

Figure 4.1: Left plot: The correlation between sin2 2θ13 and δCP as calculated in the example on
page 24, but for 1 d.o.f. only. Right plot: The χ2-value of the projection onto the sin2 2θ13-axis as function
of sin2 2θ13. The projection onto the sin2 2θ13-axis is obtained by finding the minimum χ2-value for each
fixed value of sin2 2θ13 in the left-hand plot, i.e., along the gray vertical lines. The thick gray curve marks
the position of these minima in the left-hand plot. The arrows mark the obtained fit ranges for sin2 2θ13
at the 3σ confidence level (1 d.o.f.), i.e., the precision of sin2 2θ13.

Function 4.5 double glbChiTheta13(const glb_params in, glb_params out, int

exp) returns the projected χ2 onto the θ13-axis for the experiment exp. For the simulation
of all initialized experiments, use GLB_ALL for exp. The values in in are the guessed fit
values for the minimizer (all parameters other than θ13) and the fixed fit value of θ13. The
actually determined parameters at the minimum are returned in out, where θ13 is still at
its fixed value. If out is set to NULL, this information will not be returned.

Function 4.6 double glbChiDelta(const glb_params in, glb_params out, int

exp) returns the projected χ2 onto the δCP-axis for the experiment exp. For the simulation
of all initialized experiments, use GLB_ALL for exp. The values in in are the guessed fit
values for the minimizer (all parameters other than δCP) and the fixed fit value of δCP.
The actually determined parameters at the minimum are returned in out, where δCP is
still at its fixed value. If out is set to NULL, this information will not be returned.

All of the minimization functions have a similar parameter structure: The fixed fit
parameter value and the guessed starting point of the minimizer, i.e., the guessed position
of the minimum, are transferred in the list in. Part of this list are the matter density
scaling factors of all experiments, which are also minimized over. The minimizer is then
started at the guessed point and runs into the local minimum, where the fit parameter
of the projection axis is fixed. For the true solution, it is usually sufficient to start the

38 CHAPTER 4. Calculating χ2-projections: how one can include correlations

minimizer at the true parameter values. However, the convergence speed might be better by
starting it slightly off this point. In addition, there are problems in many cases with more
complicated topologies, which means that better guesses for the position of the minimum
are needed. The position of the minimum is then returned in out together with the number
of iterations used for the minimization. It is very often useful to print the output of the
minimization with glbPrintParams in order to check that the minimum is the appropriate
one. For example, if the minimizer ends up in the wrong-sign solution in ∆m2

31, priors
can be used to force it into the tested minimum. In addition, the number of iterations
used allows an optimization of the convergence speed. Note that before any minimization,
glbSetCentralValues and glbSetInputErrors have to be used at least once. In addition,
note that the resulting χ2 of glbChiTheta13 (or glbChiDelta) for the combination of more
than one experiment is not equal to the sum of the individual χ2-values anymore. This
has two reasons: First, the topology of the fit manifold is altered by the addition of χ2-
values of different experiments. Thus, after the minimization, the position of the minimum
can be different to the ones of the individual experiments. Second, the priors for the
external knowledge on the parameters are only added once – independent of the number
of experiments.

The output of the minimizer in out carries as many matter density scaling factors
as there are experiments. Either one (for the simulation of one experiment) or all (for
the simulation of all experiments) are different from 1.0 if matter density uncertainties are
present, since each experiment may face other matter density conditions. The minimizers of
individual experiments “know” which experiment they are currently treating, which means
that they only return the matter density scaling factor of the appropriate experiment.
For example, calculating glbChiTheta13 for the last experiment number, the last density
value will be returned. This approach turns out to be extremely useful together with the
simulation of more than one experiment. One can, for instance, locate the degeneracies
of all individual experiments. In order to test if these degeneracies are still present in
the combination of all experiments (which has a very different topology), one can test the
combination of experiments with the output out from the individual experiments. In this
case, even the correct matter density scaling factor output is used.

The example on page 36 demonstrates how one can obtain Fig. 4.1 (right) with keeping
all parameters but δCP fixed, as well as how one can include the full n-parameter correlation
with external input. It also demonstrates how these two compare to each other. One
can easily read off this example that there is a substantial impact of the correlation with
oscillation parameters other than δCP. Note that it uses the function glbChiNP for arbitrary
projections from the next section for the minimization over δCP. In addition, there is
one interesting feature in guessing the oscillation parameters in this example: In order
to avoid falling into the wrong minimum, the fit value of δCP is guessed from Fig. 4.1
(left). This quite sophisticated “guessing” is typical for neutrino factories because of the
(δCP, θ13)-degeneracy, whereas it is for superbeams often sufficient to use the true values.
A strong indication for a wrong guessing are discontinuous jumps in the projected χ2-
function, where the minimizer jumps from one minimum to another. In such cases, the
starting point of the minimizer has to be adjusted to help it find the true minimum. Other

4.4 Projection onto any hyperplane∗ 39

examples for projections onto a parameter axis while keeping exactly one parameter fixed
are glbChiTheta23, glbChiDm31, and glbChiDm21, which can be found in Table 1.1 on
page 4.

Since the number of different parameter vectors used by GLoBES may be a bit confusing,
we summarize the most common parameter sets used in the calculations:

The simulated/true values are the values set in glbSetRates.

The fit values are the values in the first parameter in of glbChiTheta13 (and the other
minimization functions) which are fixed by definition (such as θ13 for glbChiTheta13).

The starting point/educated guess for the minimizer are the values in the first pa-
rameter in of glbChiTheta13 (and the other minimization functions) which are free
by definition (such as all but θ13 for glbChiTheta13).

The minimization result of the marginalization process are the values in the second
parameter out of glbChiTheta13 (and the other minimization functions) which are
free by definition (such as all but θ13 for glbChiTheta13). The other values in out

still correspond to the fit values.

The position of external priors, i.e., the best-fit values of external input, is set by
glbSetCentralValues.

The magnitude of external errors, i.e., the errors of external input, is set by
glbSetInputErrors.

4.4 Projection onto any hyperplane∗

In general, one can show the measurement result in any k-dimensional hyperplane, where
k is smaller than the dimension of the parameter space n, and thus the dimension of the
fit manifold. In this case, k parameters are fixed and n − k parameters are minimized
over. One such example is the projection of the fit manifold onto the sin2 2θ13-δCP-plane,
i.e., k = 2 here. In this case, the two parameters sin2 2θ13 and δCP are kept fixed, and the
others are minimized over. The corresponding function is

Function 4.7 double glbChiTheta13Delta(const glb_params in, glb_params

out, int exp) returns the projected χ2 onto the θ13-δCP-plane for the experiment exp.
For the simulation of all initialized experiments, use GLB_ALL for exp. The values in in

are the guessed fit values for the minimizer (all parameters other than θ13 and δCP) and
the fixed fit values of θ13 and δCP. The actually determined parameters at the minimum
are returned in out, where θ13 and δCP are still at their fixed values. If out is set to NULL,
this information will not be returned.

This function works analogously to the ones in the last section. It can, for example, be
used to obtain a figure similar to Fig. 4.1, left, but with all other parameters marginalized

40 CHAPTER 4. Calculating χ2-projections: how one can include correlations

Function Purpose Parameters → Result
glbAllocProjection Allocate projection vector ()

glbFreeProjection Free projection vector stale (glb_projection stale)

glbDefineProjection Assign projection vector in (glb_projection in, int

theta12, int theta13,

int theta23, int delta,

int dms, int dma)

glbCopyProjection Copy vector source to dest (const glb_projection

source, glb_projection

dest)

glbPrintProjection Print vector in to file stream (FILE* stream, const

glb_projection in)

glbSetProjectionFlag Set flag for oscillation parame-
ter which in vector in to value
flag.

(glb_projection in, int

flag, int which)

glbGetProjectionFlag Return flag for oscillation pa-
rameter which in vector in.

(const glb_projection

in, int which)→ int flag
glbSetDensity-

ProjectionFlag

Set flag for density parameter
which in vector in to value
flag.

(glb_projection in, int

flag, int which)

glbGetDensity-

ProjectionFlag

Return flag for density param-
eter which in vector in.

(const glb_projection

in, int which)→ int flag

Table 4.1: Different functions handling the glb_projection type. Flags are either GLB_FIXED or
GLB_FREE. The (un-shown) return values of the Set- and Define- functions point either to the assigned
vector if successful, or they are NULL if unsuccessful.

over. The example on page 36 illustrates then the result of the projection of the “eggs”
within the sin2 2θ13-δCP-plane onto the θ13-axis. Though the running time for one call of
these functions is somewhat shorter than the one for the sin2 2θ13- or δCP-projections, one
has to compute a two-dimensional array for such a figure (instead of a one-dimensional
list). Therefore, the overall computational effort is much higher, i.e., in the order of hours.
In many cases, it is therefore convenient to run glbChiSys first to obtain a picture of the
manifold and to adjust the parameter ranges. Then, one can run glbChiTheta13Delta for
a complete evaluation of the problem including correlations.

In principle, one can also use three- or more-dimensional projections. In addition, one
may want to use a different set of parameters for single- or two-parameter projections.
The very flexible function glbChiNP is designed for this purpose. However, because of its
flexibility, it involves more sophistication.

In order to define arbitrary projections, we introduce the vector glb_projection, which
is very similar to the oscillation parameter vector glb_params. Normally, the user does not
need to access this type directly: A set of function similar to the ones for glb_params is
provided. The purpose of glb_projection is to tell GLoBES which parameters are fixed,

4.5 User-defined priors∗ 41

and which are minimized over. Thus, in comparison to glb_params, it does not take values
for the parameters, but flags GLB_FIXED or GLB_FREE. For example, the projection onto the
θ13-axis glbChiTheta13 is nothing else than a special case of glbChiNP with θ13 fixed and
all the other parameters free. Similar to glb_params, the type glb_projection has to be
allocated first, and freed later. The access functions for glb_projection are summarized
in Table 4.1. Since the complete set is very similar to the one for glb_params, we do not
go into greater details here.

As soon as we have defined a projection, we can assign it:

Function 4.8 int glbSetProjection(const glb_projection in) sets the projection
to in. The return value is 0 if successful, and −1 if unsuccessful.

Similarly, the currently assigned projection can be returned with:

Function 4.9 int glbGetProjection(glb_projection out) writes the currently set
projection to out. The return value is 0 if successful, and −1 if unsuccessful.

After setting the central values, input errors, and the projection, we can run the minimizer:

Function 4.10 double glbChiNP(const glb_params in, glb_params out, int

exp) returns the projected χ2 onto the hyperplane specified by glbSetProjection for the
experiment exp. For the simulation of all initialized experiments, use GLB_ALL for exp.
The values in in are the guessed fit values for the minimizer (all free parameters) and the
fit values on the hyperplane (all fixed parameters). The actually determined parameters
at the minimum are returned in out, where the fixed parameters are still at their input
values. If out is set to NULL, this information will not be returned.

As an example, the projection sequence for a minimization over δCP only (and the matter
density parameters) looks like this:

glb_projection th13_projection = glbAllocProjection();

glbDefineProjection(th13_projection,GLB_FIXED,GLB_FIXED,GLB_FIXED,

GLB_FREE,GLB_FIXED,GLB_FIXED);

glbSetDensityProjectionFlag(t13_projection,GLB_FIXED,GLB_ALL);

glbSetProjection(th13_projection);

res1=glbChiNP(test_values,NULL,GLB_ALL);

glbFreeProjection(th13_projection);

In this case, only the correlation with δCP is taken into account. Note that in the example
on page 36 this projection is compared with the result including the full multi-parameter
correlation.

42 CHAPTER 4. Calculating χ2-projections: how one can include correlations

Example: Non-Gaussian external solar input

This examples demonstrates how to use a non-Gaussian error for the external solar
mixing angle input instead of a Gaussian error. The user-defined prior function reads
as follows and is very similar to the standard prior:

double my_prior(const glb_params in, void* user_data)

{

glb_params central_values = glbAllocParams();

glb_params input_errors = glbAllocParams();

glb_projection p = glbAllocProjection();

glbGetCentralValues(central_values);

glbGetInputErrors(input_errors);

glbGetProjection(p);

int i;

double pv = 0.0;

double fitvalue,centralvalue,inputerror;

/* Add oscillation parameter priors */

for(i=0;i<6;i++)

if(glbGetProjectionFlag(p,i)==GLB_FREE)

{

fitvalue=glbGetOscParams(in,i);

centralvalue=glbGetOscParams(central_values,i);

inputerror=glbGetOscParams(input_errors,i);

if(inputerror>1e-12) {

if(i==GLB_THETA_12) /* Prior on sin2 θ12 */

pv+=square((startvalue-square(sin(fitvalue)))/inputerror);

else

pv+=square((startvalue-fitvalue)/inputerror);

}

}

/* Add matter parameter priors */

for(i=0;i<glb_num_of_exps;i++)

if(glbGetDensityProjectionFlag(p,i)==GLB_FREE)

{

fitvalue=glbGetDensityParams(in,i);

centralvalue=1.0;

inputerror=glbGetDensityParams(input_errors,i);

if(inputerror>1e-12)

pv+=square((centralvalue-fitvalue)/inputerror);

}

glbFreeParams(central_values);

glbFreeParams(input_errors);

glbFreeProjection(p);

return pv;

}

Note that this prior interprets the central values and input errors in terms
of sin2 θ12 instead of θ12.

4.5 User-defined priors∗ 43

4.5 User-defined priors∗

User-defined priors are an advanced concept of GLoBES 3.0 and higher. Therefore, this
section can be skipped in a first reading of the manual. They allow for arbitrary priors
which depend on the oscillation parameters only (as opposed to systematics; cf., Eq. (4.1)).
Therefore, compared to user-defined systematics, they depend on the oscillation parameters
only, but not on the systematics parameters. Examples for applications are non-Gaussian
external input, the combination with externally simulated experiments, and the constraint
to certain parameter-subspaces (such as a specific octant).

The following function replaces the standard priors by user defined ones and has to be
used after glbInit:

Function 4.11 glbRegisterPriorFunction(double (*prior)(const glb_params,

void *user_data), int (*central)(const glb_params, void *user_data), int

(*error)(const glb_params, void *user_data), void *user_data) registers a
user-defined prior function prior. In addition, it is possible to register two functions
central and error being called every time glbSetCentralValues or glbSetInputErrors

are called with the same argument. For example, the central values and input errors can be
stored in global variables for a faster access. These pointers can also be NULL. The pointer
user_data can be optionally used to circumvent the use of global variables. It is set by
glbRegisterPriorFunction and transferred to the registered functions whenever called.

The prior function should expect the parameter structure glb_params containing the
current fit values and the void-pointer user_data as arguments. We show an example for
a user-defined prior on page 42. This prior is simply registered with

glbInit(argv[0]);

glbRegisterPriorFunction(my_prior,NULL,NULL,NULL);

and replaces the standard prior of GLoBES. It behaves exactly as the standard prior, but
the solar mixing angle is interpreted as sin2 θ12 instead of θ12. Therefore, a Gaussian error
is imposed on sin2 θ12 instead of θ12, and the central values and input errors are interpreted
in terms of sin2 θ12 as well. Note that one does not need to know if the prior was called for
one experiment only or all experiments, since this information is implicitly given by the
different density projection flags being set accordingly.

44 CHAPTER 4. Calculating χ2-projections: how one can include correlations

45

Chapter 5

Locating degenerate solutions

Here we describe how one can locate degenerate solutions in GLoBES, and we discuss several
techniques for the application software.

5.1 Minimization over all oscillation parameters

In the last chapter, we introduced marginalizations over different parameters to obtain
measurement precisions. Similarly, one can minimize over all n parameters to find the local
minimum close to any starting point. This approach is very useful for the exact numerical
location of a degeneracy if its approximate position is known. For the determination of the
approximate position, one can use analytical approaches or an educated guess. Though the
usage of the all-parameter minimizers is quite simple, one should keep in mind that they
are local minimizers. Therefore, one may need a very sophisticated application software to
find all degenerate solutions.

The function to perform the all-parameter minimization is glbChiAll:

Function 5.1 double glbChiAll(const glb_params in, glb_params out, int

exp) returns the minimized χ2 over all parameters for the experiment exp. For the
simulation of all initialized experiments, use GLB_ALL for exp. The values in in are the
guessed fit values for the minimizer. The actually determined parameters at the minimum
are returned in out. If out is set to NULL, this information will not be returned.

This function takes the suspected position of the local minimum and returns its actual
position in out, as well as the χ2-value at the minimum as return value. Thus, the return
value can be immediately used to judge whether the located degeneracy appears at the
chosen confidence level.

The example on page 46 illustrates how to locate the sgn(∆m2
31)-degeneracy and show

the corresponding degenerate solution in the sin2 2θ13-δCP-plane together with the original
solution. In this case, the position of the degeneracy can be easily guessed to be at the true
parameter values but with inverted ∆m2

31. The minimizer then runs off the plane of these
parameters into the local minimum. It is very important to take into account the position

46 CHAPTER 5. Locating degenerate solutions

Example: Finding the sgn(∆m2
31)-degeneracy

In many cases, one can find the exact position of the sgn(∆m2
31)-degeneracy with

glbChiAll, where one starts the local minimizer at the suspected position and lets it
run into the minimum. The following code excerpt corresponds to finding the degen-
erate solution for the example on page 24, and it is from example3.c:

/* Set starting vales to suspected position at opposite sign of ldm */

glbDefineParams(central_values,theta12,theta13,theta23,deltacp,sdm,-ldm);

glbSetDensityParams(central_values,1.0,GLB_ALL);

/* Set input errors for external input, where some information on ldm

is imposed in order to avoid falling into the right-sign solution */

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,ldm/3);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetCentralValues(central_values);

glbSetInputErrors(input_errors);

/* Localize degenerate solution by minimization over all parameters

*/

double CL=glbChiAll(central_values,deg_pos,GLB_ALL);

/* Now: CL is the chi2 of the deg. solution and deg_pos the position */

Using deg_pos to obtain a section of the degeneracy in the sin2 2θ13-δCP-plane (cf.,
example3.c), one can plot it as a contour plot in addition to the original solution (2
d.o.f., gray curves):

10
-4

10
-3

10
-2

sin
2

2Θ13

0

50

100

150

200

∆
C

P
@D

eg
re

es
D

1Σ

2Σ

3Σ

GLoBES 2007

5.2 Advanced tricks for degeneracy localization∗ 47

of the degeneracy off this plane, since the actual χ2 in the minimum is probably lower than
in the plane. Thus, the degeneracy may not even appear at the chosen confidence level
in the plane, but it does appear at the real minimum. The two sections through the fit
manifold shown in the figure on page 46 therefore do not appear at the same oscillation
parameter values.1

Note: Inverting the mass hierarchy is not precisely the same as changing from
∆m2

31 → −∆m2
31. In this case the absolute value of ∆m2

32 changes also, which introduces
a new frequency to the problem. Therefore, if we assume normal hierarchy whenever
∆m2

31 > 0, the corresponding point in parameters space for inverted hierarchy is given
by ∆m2

31 → −∆m2
31 + ∆m2

21, because with this definition the absolute value of ∆m2
32 is

unchanged and no new frequency is introduced.

5.2 Advanced tricks for degeneracy localization∗

For the more advanced reader, a number of tricks can be useful for the numerical localiza-
tion of degenerate solutions. Here we give a qualitative, incomplete list:

Minimum χ2 larger than threshold. If a located degeneracy has a minimum χ2 larger
than the corresponding confidence level threshold for the discussed quantity of in-
terest, the degeneracy can be immediately ignored. This saves a lot of computation
time.

Locating degeneracies in more complicated topologies. For more complicated
topologies, such as for neutrino factories, it is often useful to use multi-step location
procedures or analytical knowledge. For example, for a numerical procedure, one
may first of all switch off the systematics and keep sin2 2θ13 or δCP fixed, i.e., use
glbChiTheta13, where sin2 2θ13 or δCP is fixed at the best-fit value. The result can
then be used as a starting point for glbChiAll for the individual experiments with
the systematics switched on again.

Forcing the minimizer into the targeted solution. In addition to switching off the
systematics, it can be useful to reduce the input errors during some steps of the
localization process in order to prevent the minimizer from running away too far
from the targeted solution. The example on page 46 illustrates this with the input
error for ∆m2

31: Since the guessed starting point might be quite far away from the real
degeneracy, the algorithm may in some cases find the original solution instead of the
degeneracy (which can be immediately seen from the output vector). The input error
for ∆m2

31 gives the algorithm a “bias” against the original solution. However, note

1The discussed figure on page 46 is produced by glbChiSys and thus only represents a section
through the fit manifold. For the projection including correlations, one may rather want to use glb-

ChiTheta13Delta.

48 CHAPTER 5. Locating degenerate solutions

that the input error must not be too small in order to avoid a significant contribution
of the prior to the final χ2. Alternatively, one could once again run glbChiAll with
the located minimum as in vector, and ∆m2

31 kept free.

Finding degeneracies with multiple experiments. For multiple experiments, it
turns out to be useful to locate the degeneracies for individual experiments first.
Then, all of the found degeneracies below the threshold can be tested for the combi-
nation of all experiments.

Tracking algorithm. If one scans a large portion of the parameter space with different
input values, it is often useful to use the output from the previous minimization as
educated guess for the next minimization. This works often very well if the degeneracy
can be located in a part of the parameter space and the input parameter values change
slowly enough (adiabatic transformation of the fit manifold).

Pre-scanning the parameter space. In some cases, a very fast procedure can be a pre-
scan of the relevant parameters using the very fast glbChiSys. For example, for the
intrinsic degeneracy, the location of the degeneracy in the (δCP, θ13) plane can easily
and quickly found with glbChiSys while keeping the other parameters fixed. Use
this location then as a starting point for glbChiAll.

Manual scan of a subspace. In some cases, the minimizer easily ends up in the
wrong/unwanted solution, which is in most cases the already known best-fit solu-
tion. For example, when locating the octant degeneracy, it is difficult to prevent
the minimizer from running into the best-fit octant. In this case, one can scan one
parameter (such as θ23) on a grid by choosing only valid values, and use glbChiNP

to marginalize over the other ones (while keeping e.g. θ23 fixed). Therefore, the
6-parameter minimization is split into a 1-parameter grid-based minimization and a
5-parameter simultaneous minimization. Advantage: Runs with all GLoBES versions.
Disadvantage: Very slow.

Using Schwetz-priors (GLoBES 3.0 and higher). An elegant and fast method to pre-
vent the minimizer from running into parts of the parameter space is to use user-
defined priors and add a penalty as soon as a taboo zone is entered (cf., Sec. 4.5).
This method was initially suggested by Thomas Schwetz.

Using total rates. In order to systematically locate all degeneracies (the eight-fold de-
generacy), relatively reliable methods use the total appearance neutrino and antineu-
trino event rates of the experiment to determine educated guesses. The method goes
as follows: Plot the curves with equal total rate in the sin2 2θ13-δCP-plane for both
neutrinos and antineutrinos using the same rates as in the best-fit point. The curves
will intersect at the intrinsic degeneracy (if it all). Plot the same curves for the same
rates with sgn(∆m2

31) flipped. Again you will find a maximum of two intersection
points. Now do the same for π/2 − θ23 flipped, and for sgn(∆m2

31) combined with
π/2 − θ23 flipped (mixed degeneracy). You will find at most two more intersection

5.2 Advanced tricks for degeneracy localization∗ 49

points in each case. The results should look somewhat like this, where the best-fit
point is not marked2:

10
-5

10
-4

10
-3

10
-2

10
-1

sin
2

2Θ13

1

2

3

4

5

6

∆

Best-fit plane

10
-5

10
-4

10
-3

10
-2

10
-1

sin
2

2Θ13

1

2

3

4

5

6

∆

Sign-degeneracy

10
-5

10
-4

10
-3

10
-2

10
-1

sin
2

2Θ13

1

2

3

4

5

6

∆

Octant degeneracy

10
-5

10
-4

10
-3

10
-2

10
-1

sin
2

2Θ13

1

2

3

4

5

6

∆

Mixed degeneracy

Altogether, there is a maximum of eight intersection points in the sin2 2θ13-δCP-plane,
one of which is the best-fit point. These points can be used as starting points for
the minimizer to locate the eight-fold degeneracy. Note that similar methods using
the χ2 instead of the total rates have also been successfully used in the past. In this
case, one would scan for local minimas disconnected from the best-fit solution.

Finally, note that any degenerate solution below the confidence level threshold, which
cannot be located, makes the result appear better than it actually is. Thus, one should be
careful with the determination of the degenerate solutions in order to find all of them.

2The marks correspond to the points where the discrete degeneracies are located according to this
specific algorithm. Note that one also wants to find the positions of close-to-intersections, because statistical
errors may be as large as that the corresponding degenerate solution may still be present at the chosen
confidence level. Therefore, in the third plot these close-to-intersections are marked as well.

50 CHAPTER 5. Locating degenerate solutions

51

Chapter 6

Obtaining low-level information

In this chapter, we discuss possibilities to obtain low-level information in GLoBES, i.e.,
oscillation probabilities, rates, and other information lower than on the χ2-level.

6.1 Oscillation probabilities

GLoBES can compute the probabilities in vacuum with the following function:

Function 6.1 double glbVacuumProbability(int l, int m, int panti,double E,

double L) returns the neutrino oscillation probability νl → νm for the energy E and the
baseline L in vacuum. The parameter panti is +1 for neutrinos and −1 for antineutrinos.

Note that for this and the other probability functions 1 ≤ l, m ≤ 3. In addition, the
oscillation probabilities in matter can be obtained with:

Function 6.2 double glbProfileProbability(int exp, int l, int m, int

panti,double E) returns the neutrino oscillation probability νl → νm for the en-
ergy E in matter, where the matter density profile is the one of experiment exp. The
parameter panti is +1 for neutrinos and −1 for antineutrinos.

This function ignores the filter state, and it does not use the filter if switched on. For a
constant matter density profile, it is sufficient to specify the oscillation channel with

Function 6.3 double glbConstantDensityProbability(int l, int m, int panti,

double E, double L, double rho) returns the neutrino oscillation probability νl → νm
for the energy E in constant matter, where the matter density profile has the constant
density rho and the baseline is L. The parameter panti is +1 for neutrinos and −1 for
antineutrinos.

If one in addition wants to use the low-pass filter feature in GLoBES (see Sec. 11.5), one
can can use

52 CHAPTER 6. Obtaining low-level information

Function 6.4 double glbFilteredConstantDensityProbability(int exp, int l,

int m, int panti, double E) returns the neutrino oscillation probability νl → νm for
the energy E in constant matter, where the matter density and baseline, as well as the
filter properties are taken from experiment exp. The parameter panti is +1 for neutrinos
and −1 for antineutrinos.

This function uses the filter depending on the filter state, i.e., if it is switched off, it will
not be used.

6.2 Information from AEDL files∗

In some cases, it is necessary to obtain information from the loaded AEDL files. This and
the next sections are marked as advanced because knowledge of AEDL is required, i.e., the
reader should be familiar with Part II of the manual. The file name of an AEDL file can
be retrived with1

Function 6.5 const char *glbGetFilenameOfExperiment(int experiment) returns
the file name of the AEDL file for the experiment number experiment. Note that the
returned pointer cannot be modified.

and the references to be cited with

Function 6.6 const char *glbGetCitationForExperiment(int experiment) returns
the citation defined in the AEDL file for the experiment number experiment. Note that the
returned pointer cannot be modified. See also $citation in AEDL on page 86.

Very basic information is supplied with

Function 6.7 int glbGetEminEmax(int experiment, double *emin, double

*emax) returns the energy range [emin, emax] covered by the binning as defined in
the AEDL file for the experiment experiment.

Function 6.8 int glbGetEnergyWindow(int exp, int rule, double *low, double

*high) returns the energy window [low, high] defined in the AEDL file for the experiment
exp and rule rule. See also glbSetEnergyWindow on page 60.

Function 6.9 int glbGetEnergyWindowBins(int exp, int rule, int *lowbin,

int *highbin) returns the energy window in terms of bin numbers [lowbin, highbin]
corresponding to the energy window defined in the AEDL file for the experiment exp and
rule rule.

Function 6.10 int glbGetNumberOfBins(int exp) returns the number of bins for the
experiment exp.

1The following two functions are available in GLoBES 3.1.7 and higher.

6.2 Information from AEDL files∗ 53

Function 6.11 int glbGetNumberOfSamplingPoints(int exp) returns the number of
sampling points for the experiment exp.

Function 6.12 double *glbGetBinSizeListPtr(int exp) returns a pointer to the ar-
ray of bin widths for the experiment exp.

Function 6.13 double *glbGetSamplingStepsizeListPtr(int exp) returns a pointer
to the array of sampling step sizes for the experiment exp.

Function 6.14 double *glbGetBinCentersListPtr(int exp) returns a pointer to the
array of mean bin energies for the experiment exp.

Function 6.15 double *glbGetSamplingPointsListPtr(int exp) returns a pointer to
the array of sampling points for the experiment exp.

In order to obtain information on the structure of the rules, a number of functions are
provided:

Function 6.16 int glbGetNumberOfRules(int exp) returns the number of rules in ex-
periment exp.

Function 6.17 int glbGetLengthOfRule(int exp, int rule, int signal) returns
the length of rule rule in experiment exp. The parameter signal can be either GLB_SIG

for the number of signal components or GLB_BG for the number of background components.

Function 6.18 int glbGetChannelInRule(int exp, int rule, int pos, int

signal) returns the channel number in rule rule at the position pos of the experi-
ment exp. The parameter signal refers to signal (GLB_SIG) or background (GLB_BG).

Function 6.19 double glbGetCoefficientInRule(int exp, int rule, int pos,

int signal) returns the coefficient of the component pos in rule rule of the experiment
exp. The parameter signal refers to signal (GLB_SIG) or background (GLB_BG). See also
glbSetCoefficientInRule on page 60.

Similarly to the rules, one can find the number of channels of an experiment:

Function 6.20 int glbGetNumberOfChannels(int exp) returns the number of channels
of experiment exp.

For each channel, the efficiencies and backgrounds can be returned with the following
functions:

Function 6.21 double *glbGetEfficiencyPtr(int exp, int ch, int pre_post) re-
turns a pointer to the efficiency list for experiment exp and channel ch. The pre- or
post-smearing efficiencies are returned with pre_post set to GLB_PRE and GLB_POST, re-
spectively.

54 CHAPTER 6. Obtaining low-level information

Function 6.22 double *glbGetBackgroundPtr(int exp, int ch, int pre_post) re-
turns a pointer to the background list for experiment exp and channel ch. The pre- or
post-smearing backgrounds are returned with pre_post set to GLB_PRE and GLB_POST, re-
spectively.

Since in AEDL rules, cross section, fluxes etc. carry a ‘name’ by which they can be
referred to, while in C they carry only an integer index, it is sometimes difficult to figure out
the correct correspondence. Therefore the information about this correspondence obtained
during parsing is stored and can be accessed within C by the following two functions.

Function 6.23 int glbNameToValue(int exp, const char* context, const char

*name) Converts an AEDL name given as argument name into the corresponding C index.
The variable context describes wether this name belongs to a rule, channel, flux, energy,
or cross type environment. exp is the number of the experiment and can not be GLB_ALL.
It returns either the index in case of success or -1 in case the name was not found.

Function 6.24 const char *glbValueToName(int exp,const char* context, int

value) Converts a C index given as argument value into the corresponding AEDL name.
The variable context describes wether the index belongs to a rule, channel, flux, energy
or cross type environment. exp is the number of the experiment and can not be GLB_ALL.
It returns either the name in case of success or NULL in case the name was not found.
The returned string must not be modified.

6.3 Event rates∗

One can also return event rates in GLoBES, but this feature requires some knowledge about
the experiment definition. In fact, many of these functions are very advanced, which means
that the reader who wants to use them should be familiar with Secs. 11.4 and Sec. 11.6 of
the AEDL manual. Note that parts of the event rate access have changed in GLoBES 3.0,
because user-defined systematics require very fast access, which was not possible with the
old method.

A very simple function is for the total rate

Function 6.25 double glbTotalRuleRate(int exp, int rule, int pos, int

effi, int bgi, int coeffi, int signal) returns the total rates. A specific ex-
periment exp and a specific rule rule have to be chosen, as well as the signal or
background rate signal (either GLB_SIG or GLB_BG). The position pos refers to the
component within the signal or background, and can also be GLB_ALL. The function
may return the rates with (GLB_W_COEFF) or without (GLB_WO_COEFF) overall efficiency
coefficient, as it is specified by coeffi. In addition, it may contain the post-smearing
efficiencies (set effi to GLB_W_EFF or GLB_WO_EFF), and the post-smearing backgrounds
(set bgi to GLB_W_BG or GLB_WO_BG). The pre-smearing efficiencies and backgrounds
cannot be accessed at the rule level.

6.3 Event rates∗ 55

The function glbTotalRuleRate is especially useful if one wants to draw bi-rate graphs
with total event rates, or look for the (δCP, θ13)-degeneracy by the intersection of neutrino
and antineutrino constant event rate curves.

There are several functions to directly print or save the event rate information:

Function 6.26 int glbShowRuleRates(FILE* stream, int exp, int rule, int

pos, int effi, int bgi, int coeffi, int signal) prints the binned rule rates as
a list with energy and event rate to the file stream (either an open file, or stdout).
A specific experiment exp and a specific rule rule have to be chosen, as well as the
signal or background rate signal (either GLB_SIG or GLB_BG). The position pos refers to
the component within the signal or background, and can also be GLB_ALL. The function
may return the rates with (GLB_W_COEFF) or without (GLB_WO_COEFF) overall efficiency
coefficient, as it is specified by coeffi. In addition, it may contain the post-smearing
efficiencies (set effi to GLB_W_EFF or GLB_WO_EFF), and the post-smearing backgrounds
(set bgi to GLB_W_BG or GLB_WO_BG). The pre-smearing efficiencies and backgrounds
cannot be accessed at the rule level. The return value is 0 if successful, and −1 if
unsuccessful.

Function 6.27 int glbShowChannelRates(FILE *stream, int exp, int channel,

int smearing, int effi, int bgi) prints the binned channel rates as a list with energy
and event rate to the file stream (either an open file, or stdout). A specific experiment
exp and a specific channel channel have to be chosen. The function may return the rates
before (GLB_PRE) or after (GLB_POST) the energy smearing, as it is specified by smearing.
In addition, it may contain the pre- and post-smearing efficiencies (set effi to GLB_W_EFF

or GLB_WO_EFF), and the pre- and post-smearing backgrounds (set bgi to GLB_W_BG or
GLB_WO_BG). Note that the post-smearing efficiencies and backgrounds cannot be taken
into account if the rates are returned before the energy smearing. The return value is 0 if
successful, and −1 if unsuccessful.

For rate vectors, GLoBES currently supports rule-based and channel-based event rate
functions, where typically pointers on the rate vectors are returned. The following pointer-
based functions are currently supported:

Function 6.28 double *glbGetChannelRatePtr(int exp, int ch, int pre_post)

returns a pointer to the simulated rate vector of experiment exp and channel ch. Either
pre-smearing (pre_post is GLB_PRE) or post-smearing (pre_post is GLB_POST) rates can
be accessed.

Function 6.29 double *glbGetRuleRatePtr(int exp, int rule) returns a pointer to
the simulated rate vector of experiment exp and rule rule.

Function 6.30 double *glbGetSignalRatePtr(int exp, int rule) returns a pointer
to the simulated signal rate vector of experiment exp and rule rule.

56 CHAPTER 6. Obtaining low-level information

Function 6.31 double *glbGetBGRatePtr(int exp, int rule) returns a pointer to
the simulated background rate vector of experiment exp and rule rule.

Function 6.32 double *glbGetChannelFitRatePtr(int exp, int ch, int

pre_post) returns a pointer to the fit rate vector of experiment exp and channel
ch. Either pre-smearing (pre_post is GLB_PRE) or post-smearing (pre_post is GLB_POST)
rates can be accessed.

Function 6.33 double *glbGetSignalFitRatePtr(int exp, int rule) returns a
pointer to the fit signal rate vector of experiment exp and rule rule.

Function 6.34 double *glbGetBGFitRatePtr(int exp, int rule) returns a pointer
to the fit background rate vector of experiment exp and rule rule.

A simple example how to use these functions to print a rate vector is

int i;

int n_bins = glbGetNumberOfBins(EXP_FAR);

double *true_rates_N = glbGetRuleRatePtr(0, 0);

printf("Simulated rates, experiment 0, rule 0: \n");
for(i=0;i<n_bins;i++) printf("% g ",true_rates_N[i]);

printf("\n");

6.4 Fluxes and cross sections∗

Another piece of low-level information, which can be returned by GLoBES, are the numbers
from the loaded fluxes and cross sections. The following functions interpolate on the loaded
fluxes and cross sections, i.e., any value in the allowed energy range can be given as input:

Function 6.35 double glbFlux(int exp, int ident, double E, double

distance, int l, int anti) returns the flux of flux number ident of the experi-
ment exp for the flavor νl and polarity anti (+1: neutrinos, −1: antineutrinos) at the
energy E and distance distance.

Function 6.36 double glbXSection(int exp, int ident, double E, int l, int

anti) returns the cross section of experiment exp, cross section number ident for the
flavor νl and polarity anti (+1: neutrinos, −1: antineutinos) at the energy E.

The number of fluxes can be obtained with

Function 6.37 int glbGetNumberOfFluxes(int exp) returns the number of fluxes de-
fined in experiment exp.

57

Chapter 7

Changing experiment parameters at
running time

Many of the parameters in experiment definitions can be changed at running time. For
example, we have introduced in Sec. 2.2 possibilities to change the integrated luminosity,
which consists of source power, running time, and target mass. In this chapter, we discuss
more sophisticated experiment changes. However, since GLoBES computes a lot of infor-
mation only once when an experiment is loaded, many parameters can not be changed at
running time. For example, the energy resolution function or the number of bins are used
to compute the smearing matrix already at the initialization of the experiment, which saves
a lot of computation time for most applications. In Sec. 7.3, we introduce a mechanism
how one can even change these AEDL parameters during running time.

7.1 Systematics

Changing the systematics at running time can be useful to investigate the impact factors
affecting the measurement. In GLoBES, the systematics is defined rule-based, i.e., each
rule has its own systematics. In addition, GLoBES supports dual systematics, i.e., AEDL
requires that it has to be defined in each rule what “Systematics on” and “Systematics
off” means. In principle, these two sets correspond to two completely different systematics
implementations, and it is up to the AEDL authors to define what that means. From the
point of view of the API, it is very simple to switch the systematics on and off, i.e., to
switch between the two systematics modes:

Function 7.1 int glbSwitchSystematics(int exp, int rule, int on_off)

switches the systematics in experiment exp and rule rule on (on_off is GLB_ON)
or off (on_off is GLB_OFF). For the experiment or rule index, one can also use GLB_ALL.

One can also return the systematics state with

Function 7.2 int glbGetSysOnOffState(int exp, int rule) returns the systematics
state in experiment exp and rule rule.

58 CHAPTER 7. Changing experiment parameters at running time

In the example on page 59, the application of glbSwitchSystematics is demonstrated to
show the impact of systematics, correlations, and degeneracies.

The following material requires knowledge of AEDL, which means that it can be skipped
at a first reading. During running time, it is possible to change the systematics of an
experiment or rule (as compared to the systematics assigned in the AEDL file) with the
following function:

Function 7.3 int glbSetChiFunction(int exp, int rule, int on_off, const

char *name, double *errors) tells GLoBES to use the registered user-defined sys-
tematics identified by the string name or any built-in systematics to calculate χ2 for the
experiment exp and the rule rule. Both of the parameters exp and rule can take the value
GLB_ALL to specify that the given systematics function should be used for each experiment
or each rule. The parameter on_off determines if the systematics function should be
used when systematical errors are switched on (GLB_ON), or when they are switched off
(GLB_OFF). The array errors sets the systematical errors in the order in which they are
expected by the systematics function (indices run from 0 to the number of systematics
parameters-1). The function returns zero, if successful.

Note that user-defined systematics functions have to be registered with
glbDefineChiFunction first. One can also request the systematics function by

Function 7.4 int glbGetChiFunction(int exp, int rule, int on_off, char

*sys_id, size_t max_len) returns the name of the systematics χ2 function of a given
experiment exp and rule rule for systematics on or off as given by on_off. The name
is copied to the string sys_id, the maximum length of which is specified by max_len. If
max_len is too small, or if any other error occurs, the return value is < 0.

Except from the general treatment of systematics, one can read out and change the
signal and background errors for standard pre-defined systematics during running time:

Function 7.5 int glbSetSignalErrors(int exp, int rule, double norm, double

tilt) sets the signal errors of experiment exp and rule rule to norm (normalization
error) and tilt (tilt/calibration error).

Function 7.6 int glbGetSignalErrors(int exp, int rule, double* norm,

double* tilt) writes the signal errors of experiment exp and rule rule to norm

(normalization error) and tilt (tilt/calibration error).

Function 7.7 int glbSetBGErrors(int exp, int rule, double norm, double

tilt) sets the background errors of experiment exp and rule rule to norm (normalization
error) and tilt (tilt/calibration error).

Function 7.8 int glbGetBGErrors(int exp, int rule, double* norm, double*

tilt) writes the background errors of experiment exp and rule rule to norm (normalization
error) and tilt (tilt/calibration error).

7.1 Systematics 59

Example: The impact of systematics, correlations, and degeneracies

Here, we demonstrate how systematics, correlations, and degeneracies can be succes-
sively included in the calculation of the sin2 2θ13-sensitivity limit. The following code
fragment shows how systematics can be switched off in order to compute the sensitivity
limit from statistics only:

/* Calculate chi2 with statistics only */

double CalcNoSystematics(double theldm,double thex)

{

/* Switch systematics off for all exps and all rules */

glbSwitchSystematics(GLB_ALL,GLB_ALL,GLB_OFF);

/* Calculate Chi2-list as if systematics were on */

double res=CalcSystematics(theldm,thex);

/* Switch systematics on for all exps and all rules */

glbSwitchSystematics(GLB_ALL,GLB_ALL,GLB_ON);

return res;

}

The complete code is very advanced and can be found in example4.c. It includes many
concepts from earlier examples, and, in addition, it uses a little trick: It avoids falling
into the wrong solution with glbChiTheta13 by using the fit value of δCP from the step
before as prediction for the position of the minimum in the current calculation.
The returned lists of data from the example represent χ2 as function of the fit value
of sin2 2θ13. The intersections of these curves with the line χ2 = 9 give the sin2 2θ13

sensitivity limits at the 3σ confidence level. Note that, in the following plot, the
sgn(∆m2

31)- and (δCP, θ13)-degeneracies are not included in the sensitivity limit with
correlations only (green bar), but only in the limit with degeneracies (yellow bar):

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

sin
2

2Θ13 senstivity limit H3ΣL for NFstandard

C
H

O
O

Z
ex

cl
u

d
ed

Dm31
2
=3.0×10

-3
eV

2

Dm31
2
=2.0×10

-3
eV

2

Systematics

Correlations

Degeneracy

GLoBES 2007

60 CHAPTER 7. Changing experiment parameters at running time

In addition, the coefficients in the rules can be manipulated by1

Function 7.9 int glbSetCoefficientInRule(int exp, int rule, int pos, int

signal, double coeff) sets the coefficient of the component pos in rule rule of the
experiment exp to value coeff. The parameter signal refers to signal (GLB_SIG) or
background (GLB_BG). See also glbGetCoefficientInRule on page 53.

As a more flexible concept, the systematical errors may be given as lists for both
user-defined and built-in systematics. For example, the standard signal and background
pre-defined errors can be accessed as lists with four elements (signal normalization, sig-
nal tilt, background normalization, background tilt) if built-in systematics is used. The
corresponding functions are:

Function 7.10 int glbSetSysErrorsList(int exp, int rule, int on_off, const

double *sys_list) changes the systematical errors defined in the AEDL file in experiment
exp and rule rule to the values in sys_list. This change can be perfomed for systematics
on or systematics off by using GLB_ON or GLB_OFF for on_off.

Function 7.11 double* glbGetSysErrorsListPtr(int exp, int rule, int

on_off) returns a pointer to the list of systematical errors as defined in the AEDL
file in experiment exp and rule rule. Choose systematics on or systematics off by using
GLB_ON or GLB_OFF for on_off.

Furthermore, the energy window can be manipulated by2

Function 7.12 int glbSetEnergyWindow(int experiment, int rule, double low,

double high) sets the energy window in experiment and rule, which can be also
GLB_ALL. The energy window is limited by the energies low and high. See also
glbGetEnergyWindow on page 52.

As usual, all the set-functions return −1 if they were not successful. For user-defined
systematics, see Sec. 3.2, and for the definitions of these quantities, see Sec. 11.6.

7.2 Baseline and matter density profile∗

In order to change the baseline of an experiment, it is important to keep in mind that each
experiment has a profile type defined in the AEDL file (average density, PREM profile with
a given number of steps, or arbitrary profile; cf., Table 11.2). One can check the currently
used profile type with

Function 7.13 int glbGetProfileTypeInExperiment(int exp) returns the matter
density profile type of experiment exp.

1Available in GLoBES 3.1.7 and higher.
2Available in GLoBES 3.1.7 and higher.

7.2 Baseline and matter density profile∗ 61

For each profile type, one can easily change the baseline with
glbSetBaselineInExperiment, where the average density or the PREM profile are
re-computed, or the steps in the arbitrary profile are re-scaled. If this behavior is not the
desired one, one has to use glbSetProfilDataInExperiment as explained below.

Function 7.14 int glbSetBaselineInExperiment(int exp, double baseline) sets
the baseline length in experiment exp to baseline. The function returns −1 if it was
not successful.

Note that glbSetBaselineInExperiment does not change the profile type in the experi-
ment. The counterpart of this function is:

Function 7.15 double glbGetBaselineInExperiment(int exp) returns the baseline
length currently used for experiment exp.

One can not change the profile type of an experiment manually during running time.
However, one can change the matter density profile, where the profile type is automatically
switched to 3, i.e. arbitrary matter density profile. In addition, a number of functions are
provided to compute possible matter density profiles (average density, PREM profile). In
general, a matter density profile in GLoBES with N layers is represented by a list of lengths

Lengths = (x1, x2, . . . , xN) (7.1)

and a list of densities
Densities = (ρ1, ρ2, . . . , ρN), (7.2)

where the baseline is given by

L =
N∑
i=1

xi. (7.3)

In C, lists are represented as pointers to the first element:

double* lengths;

double* densities;

Many of the GLoBES baseline functions take and return such lists as parameters, and are
therefore more sophisticated to handle. In general, any function returning lists allocates
the memory for them. It is then up to the user to free this memory! In addition, they
normally provide the length of the lists N by means of an additional argument which is a
pointer to size_t. Normally, it is enough to declare a variable of the type size_t and to
give its address to the function. The following functions return matter density profiles:

Function 7.16 int glbLoadProfileData(const char* filename, size_t *layers,

double **lengths, double **densities) loads a density file from the file filename. It
returns the number of layers layers, the list of lengths lengths, and the list of densities
densities.

62 CHAPTER 7. Changing experiment parameters at running time

The file should contain in each line a length and density for one layer, which are separated
by an empty space.

Function 7.17 int glbStaceyProfile(double baseline, size_t layers, double

**lengths, double **densities) creates a PREM/Stacey matter density profile with a
number of layers steps for the baseline baseline. The list of lengths lengths and the
list of densities densities are returned.

Note that this function does not interpolate or average within individual layers.

Function 7.18 glbAverageDensityProfile(double baseline, double **lengths,

double **densities) creates a average matter density profile from the PREM/Stacey
profile with one step for the baseline baseline. The list of lengths lengths and the list of
densities densities are returned.

The average matter density ρ̄(L) for a matter density profile ρ(x) along the baseline L
baseline is defined as

ρ̄(L) =
1

L

L∫
0

ρ(x)dx =
1

L

L∫
0

ρ̃ (d(x)) dx , (7.4)

where ρ̃(d) is the PREM matter density as function of the distance d to the Earth’s core,
and d(x) =

√
x2 +R2 − 2xR cos θ is the purely geometrical relationship between d and x

with the Earth radius R and the nadir angle cos θ = L/(2R).

Function 7.19 int glbGetProfileDataInExperiment(int exp,size_t *layers,

double** lengths, double** densities) returns the matter density profile currently
used for experiment exp. The number of layers layers, the list of lengths lengths, and
the list of densities densities are returned.

All these functions return −1 if they were not successful.
The counterpart of these functions to assign a specific matter density profile to an

experiment is

Function 7.20 int glbSetProfileDataInExperiment(int exp, size_t

layers,const double* lengths, const double* densities) sets the matter density
of experiment exp to an arbitrary profile with layers steps. The density layers are
specified by the lists lengths and densities. The function returns −1 if it was not
successful.

Finally, let us take a look at two examples. This example changes the baseline length
to 7 500 km, where the average matter density is manually computed:

double* lengths;

double* densities;

glbAverageDensityProfile(7500,&lengths,&densities);

7.3 External parameters in AEDL files∗ 63

glbSetProfileDataInExperiment(0,1,lengths,densities);

free(lengths);

free(densities);

In the second example, we change the baseline to a PREM profile with 100 matter density
steps and print them:

double* lengths;

double* densities;

glbStaceyProfile(7500,100,&lengths,&densities);

int i;

for(i=0;i<100;i++) printf("%g %g \n",lengths[i],densities[i]);
glbSetProfileDataInExperiment(0,100,lengths,densities);

free(lengths);

free(densities);

7.3 External parameters in AEDL files∗

Using external parameters in AEDL files is a very powerful feature to change experiment
parameters at running time, which requires, however, that the experiment be re-initialized.
For example, one can change the energy resolution function or the number of energy bins.
However, in some cases, there might be complications, such that the number of pre- or post-
smearing efficiencies does not correspond to the number of energy bins anymore. Therefore,
this feature needs to be used with care.

In order to use external parameters in AEDL files, one simply introduces them. For
example, an energy resolution function

energy(#EnergyResolution1)<

type = 1

@sigma_e = { myres ,0,0 }

>

might be defined in AEDL, where the energy resolution is proportional to myres × energy.
In order to use the user-defined variable, one has to assign it with

glbDefineAEDLVariable before the experiment is initialized with glbInitExperiment:

Function 7.21 void glbDefineAEDLVariable(const char* name, double value)

assigns the value value to the AEDL variable name.

In our energy resolution example, one could now loop over the energy resolution such as
with

64 CHAPTER 7. Changing experiment parameters at running time

int i;

for(i=5;i<20;i++)

{

glbClearExperimentList();

glbDefineAEDLVariable("myres",0.01*i);

glbInitExperiment(...);

/* do something */

}

Note that one does not have to re-initialize the oscillation parameter vectors every time
within the loop as long as the number of experiments does not change. The counterpart
of that function is3

Function 7.22 double glbGetAEDLVariable(const char* name) returns the value of
the AEDL variable name.

Similar to a simple AEDL variable, one can transfer the value of an AEDL list with (cf.,
Sec. 10.3)

Function 7.23 glbDefineAEDLList(const char *name, double *list, size_t

length) assigns the list list of length length to the AEDL variable name.

See Sec. 7.2 for how to use such lists. In order to clear the external variable stack if one is
excessively using it, one can use

Function 7.24 void glbClearAEDLVariables() clears the AEDL variable list.

This function is called automatically upon exit of the program.

7.4 Algorithm parameters: Filter functions∗

The oscillation frequency filters to filter fast oscillations can also be accessed by the user
interface. For details of the filter functions, we refer to Sec. 11.5 of the AEDL manual.

In particular, there are a number of functions:

Function 7.25 int glbSetFilterStateInExperiment(int exp, int on_off) sets the
filter state in experiment exp to on (GLB_ON) or off (GLB_OFF).

Function 7.26 int glbGetFilterStateInExperiment(int exp) returns the filter state
of experiment exp.

Analogously, the filter value can be accessed:

3Supported by version 3.1.7 and higher.

7.4 Algorithm parameters: Filter functions∗ 65

Function 7.27 int glbSetFilterInExperiment(int exp, double filter) sets the
filter in experiment exp to the value value.

Function 7.28 double glbGetFilterInExperiment(int exp) returns the filter value of
experiment exp.

The return value of all Set- functions is −1 if they were not successful.

66 CHAPTER 7. Changing experiment parameters at running time

67

Chapter 8

Simulating non-standard physics∗

In this chapter, we discuss how to simulate non-standard physics with GLoBES, i.e., physics
beyond the standard three-flavor neutrino oscillation scenario. For the first time, this
feature was used as experimental feature in Ref. [20], and it has become a standard feature
of GLoBES starting from version 3.0. Since the computation of oscillation probabilities,
and therefore the flavor transition probabilities, is the core basic element of GLoBES, the
introduction of non-standard physics requires familiarity with the probability calculation in
GLoBES. It is therefore an advanced topic. Below, we will demonstrate how and where to do
the necessary modifications, and how to simulate non-standard physics in the application
software.

8.1 Modification of GLoBES

GLoBES 3.0 and higher does not require a re-compilation of the software to simulate non-
standard physics. However, the probability engine has to be changed, which one would
usually do by copying the respective parts from glb_probability.c (in the source sub-
directory). Therefore, for sophisticated applications, familiarity with this file is required. A
number of comments are provided in this file to keep it self-explanatory. The key function
types are

Function 8.1 int (*glb_set_oscillation_parameters_function)(glb_params

p, void* user_data) is used to pass the fundamental oscillation parameters p to
the probability engine. The function should store them into variables accessible to
glb_probability_matrix_function. In addition, it can be used to pre-compute quanti-
ties which are dependent on the oscillation parameters only, such as the mixing matrix.
In order to circumvent global variables, arbitrary additional parameters can be passed to
the function in user_data, which is set by glbRegisterProbabilityEngine.

Function 8.2 int (*glb_get_oscillation_parameters_function)(glb_params p,

void* user_data) reads the fundamental oscillation parameters from the internal
variables of the probability engine, and writes them into p. In order to circumvent global

68 CHAPTER 8. Simulating non-standard physics∗

variables, arbitrary additional parameters can be passed to the function in user_data,
which is set by glbRegisterProbabilityEngine.

Function 8.3 int (*glb_probability_matrix_function)(double P[3][3],

int cp_sign, double E, int psteps, const double *lengths, const double

densities, double filter_sigma, void user_data) calculates the neutrino oscil-
lation probability matrix and returns it in P. The cp_sign is +1 for neutrinos and -1
for antineutrinos. In addition, the matter density profile to be used is characterized by
the number of steps psteps, the lengths of the matter density layers in the list lengths,
and the corresponding densities in the list densities. The parameter filter_sigma

defines the width of the low-pass filter to be used, or no filter usage if negative. In order to
circumvent global variables, arbitrary additional parameters can be passed to the function
in user_data, which is set by glbRegisterProbabilityEngine.

These three function types correspond to the standard implementation func-
tions glb_set_oscillation_parameters, glb_get_oscillation_parameters, and
glb_probability_matrix in glb_probability.c of the source code of GLoBES, where
one can find the standard behavior and use it by cut and paste (including the variables
and code used by these functions).

In order to use non-standard physics in GLoBES, one needs to re-define the three above
functions and register them after glbInit with

Function 8.4 int glbRegisterProbabilityEngine(int n_parameters,

glb_probability_matrix_function prob_func,

glb_set_oscillation_parameters_function set_params_func,

glb_get_oscillation_parameters_function get_params_func,

void* user_data) registers a probability engine for the simulation of non-standard
physics with n_parameters oscillation parameters (n_parameters ≥ 6). The three
functions prob_func, set_params_func, and get_params_func will be used with the
function types defined above. In order to circumvent global variables, an arbitrary pointer
user_data can be defined, that will be passed to the probability engine in each function
call.

The number of oscillation parameters can, at any time, be obtained with

Function 8.5 int glbGetNumOfOscParams() returns the number of oscillation parame-
ters.

A related function which allows to name an oscillation engine without invoking it

Function 8.6 int glbDefineOscillationEngine(int n_parameters,

glb_probability_matrix_function prob_func,

glb_set_oscillation_parameters_function set_params_func,

glb_get_oscillation_parameters_function get_params_func,

const char[] name,

8.1 Modification of GLoBES 69

void* user_data) defines a probability engine for the simulation of non-standard
physics with n_parameters oscillation parameters (n_parameters ≥ 6). The three
functions prob_func, set_params_func, and get_params_func will be used with the
function types defined above. In order to circumvent global variables, an arbitrary pointer
user_data can be defined, that will be passed to the probability engine in each function
call. name can be use to refer to the so defined oscillation engine within AEDL using the
$oscillation_engine directive.

Let us now illustrate the implementation of non-standard physics with a simple example,
which can be found as example6.c in the example directory. This example is a simplified
version of Sec. 4 of Ref. [20]. It uses an analytical probability calculation for a reactor
experiment with a baseline being treated in vacuum for simplicity. The non-standard
effect is the loss of coherence because of wave packet decoherence or any other such effect,
i.e., we have one additional oscillation parameter. We need to define two functions to
access a set of global oscillation parameters

double th12, th13, th23, deltacp, sdm, ldm, sigma_E;

int my_set_oscillation_parameters(glb_params p, void *user_data)

{

th12 = glbGetOscParams(p, GLB_THETA_12);

th13 = glbGetOscParams(p, GLB_THETA_13);

th23 = glbGetOscParams(p, GLB_THETA_23);

deltacp = glbGetOscParams(p, GLB_DELTA_CP);

sdm = glbGetOscParams(p, GLB_DM_21) * 1.0e-18;

ldm = glbGetOscParams(p, GLB_DM_31) * 1.0e-18;

sigma_E = glbGetOscParams(p, GLB_SIGMA_E);

return 0;

}

int my_get_oscillation_parameters(glb_params p, void *user_data)

{

glbSetOscParams(p, th12, GLB_THETA_12);

glbSetOscParams(p, th13, GLB_THETA_13);

glbSetOscParams(p, th23, GLB_THETA_23);

glbSetOscParams(p, deltacp, GLB_DELTA_CP);

glbSetOscParams(p, sdm*1.0e18, GLB_DM_21);

glbSetOscParams(p, ldm*1.0e18, GLB_DM_31);

glbSetOscParams(p, sigma_E, GLB_SIGMA_E);

return 0;

}

70 CHAPTER 8. Simulating non-standard physics∗

Furthermore, we need to define the probability matrix calculation itself – in this case, we
perform an analytical calculation:

int my_probability_matrix(double P[3][3], int cp_sign, double E,

int psteps, const double *length, const double *density, double

filter_sigma, void *user_data)

{

int i, j;

double L, Delta21, Delta31, Delta32;

double D21, D31, D32, s13, c13, s12, c12, t;

/* Set all probabilities to zero initially */

for (i=0; i < 3; i++) for (j=0; j < 3; j++) P[i][j] = 0.0;

/* Calculate total baseline */

L = 0.0; for (i=0; i < psteps; i++) L += length[i];

L = KM_TO_EV(L) * 1.0e9; /* Convert to GeV−1 */

/* Compute P_ee */

s12 = sin(th12); c12 = cos(th12);

s13 = sin(th13); c13 = cos(th13);

t = L / (4.0 * E);

Delta21 = sdm * t; Delta31 = ldm * t;

Delta32 = Delta31 - Delta21;

t = M_SQRT2 * sigma_E / E;

D21 = exp(-square(Delta21 * t));

D31 = exp(-square(Delta31 * t));

D32 = exp(-square(Delta32 * t));

P[0][0] = square(square(c13)) * (1 - 2.0*square(s12*c12)*

(1 - D21*cos(2.0*Delta21))) + 2.0*square(s13*c13) *

(D31*square(c12)*cos(2.0*Delta31)

+ D32*square(s12)*cos(2.0*Delta32)) + square(square(s13));

return 0;

}

Now we can register the probability engine after glbInit:

glbInit(argv[0]);

glbRegisterProbabilityEngine(7, /* Number of parameters */

&my_probability_matrix,

&my_set_oscillation_parameters,

&my_get_oscillation_parameters,

NULL);

8.2 Using non-standard physics in the application software 71

We will demonstrate in the next section how to access the non-standard physics parameter
in the application software.

8.2 Using non-standard physics in the application

software

Using more than six parameters in GLoBES, you will have to maintain the additional pa-
rameters. For example, there are no standard routines in GLoBES which define projections
including more than six parameters, which means that you should only use glbChiNP fur-
ther on in order to have a defined behavior of the projection. In addition, you can still use
glbDefineParams, but this will only access the six standard parameters. You will need to
set the additional ones manually using glbSetOscParams. Do not forget to maintain your
non-standard parameters, since any negligence will be punished by un-predicted behavior!

In order to use the non-standard parameters, GLoBES creates any set of oscillation
parameters (type glb_params) with the additional parameters. To access the non-standard
parameters, you can use the following functions as usual:

• glbSetOscParams

• glbGetOscParams

• glbSetProjectionFlag

• glbGetProjectionFlag

In all these cases, the last parameter which can now run from 0 to
glbGetNumOfOscParams()-1. For instance,

glbDefineParams(true_values,0.55,0.15,0.78,0.0,0.000082,0.0022);

glbSetDensityParams(true_values,1.0,GLB_ALL);

glbSetOscParams(true_values,0.0,6);

sets all of the oscillation parameters if you have one additional parameter. In addition,
the function glbCopyParams can be used to copy all parameters inluding the non-standard
ones. For projections, it is highly recommended not to use any of the glbChi... functions
anymore except from glbChiNP, in order to have a predictive behavior of the “extra” di-
mensions.1 Similar to the oscillation parameters, you can define the marginalization over
the extra parameter(s) by glbSetProjectionFlag. You can find a simple example using
non-standard physics with the code from the last section on page 72.

1It is easy to write headers for new functions with a self-defined behavior with respect to the new
dimensions using glbChiNP.

72 CHAPTER 8. Simulating non-standard physics∗

Example: Decoherence in neutrino oscillations

The following code fragment from example6.c calculates a fit region on sin2 2θ13-σE-
space, where σE is the non-standard decoherence parameter (cf., Ref. [20]):

const int GLB_SIGMA_E = 6;

/* Fix theta13 and sigma_E, and marginalize over all other parameters

except deltaCP and th23, which do not enter P_ee */

glbDefineProjection(myproj, GLB_FREE, GLB_FIXED, GLB_FIXED, GLB_FIXED,

GLB_FREE, GLB_FREE);

glbSetDensityProjectionFlag(myproj, GLB_FIXED, GLB_ALL);

glbSetProjectionFlag(myproj, GLB_FIXED, GLB_SIGMA_E);

glbSetProjection(myproj);

for(x=0; x < 0.05+0.001; x+=0.005) /* th13 loop */

for(y=0.0; y < 0.010+0.001; y+=0.001) /* sigma_E loop */

{

/* Set vector of test=fit values */

thetheta13=asin(sqrt(x))/2.0;

glbSetOscParams(test_values,thetheta13,GLB_THETA_13);

glbSetOscParams(test_values,y,GLB_SIGMA_E);

/* Compute Chi2 with correlations */

res=glbChiNP(test_values,NULL,GLB_ALL);

AddToOutput(x,y,res);

}

The result is represented by the dark curves in the following figure (similar to Ref. [20]):

0.01 0.02 0.03 0.04 0.05

Fit value of sin
2

2Θ13

2

4

6

8

10

F
it

v
al

u
e

o
f
Σ

E
@M

eV
D

sin
2

2 Θ13 -ΣE sensitivity for Reactor1

1Σ

2Σ

3Σ

GLoBES 2007

Correlations

Systematics only

8.3 Defining oscillation parameter names at running times 73

8.3 Defining oscillation parameter names at running

times

One can either define constants for the non-standard physics parameters, as in our example

const int GLB_SIGMA_E = 6;

or assign and read out names dynamically. This feature is available in GLoBES 3.1.7 and
higher. The following functions are supported:

Function 8.7 int glbSetParamName(const char *name, int i) assigns name to the
oscillation parameter i (starting at 0 for GLB_THETA_12).

As usual, the return value is 0 (GLB_SUCCESS) if successful. Note that the string is copied,
which means that the original pointer can be modied or destroyed thereafter.

Function 8.8 int glbSetParamNames(char **names) assigns names to all of the
oscillation parameters at once. The array of strings names must be of length
glbGetNumOfOscParams(). Individual entries are allowed to be NULL.

Function 8.9 char *glbGetParamName(int i) returns the name of the oscillation pa-
rameter i.

Function 8.10 int glbFindParamByName(const char *name) returns the number of
the oscillation parameter named name.

Function 8.11 int glbSetOscParamByName(glb_params in, double value, const

char *name) sets an oscillation parameter in the structure in to value. Compared to the
similar function glbSetOscParams, which parameter is to be accessed is determined by the
name, not the number.

Function 8.12 double glbGetOscParamByName(glb_params in, const char *name)

returns an oscillation parameter in the structure in. Compared to the similar function
glbGetOscParams, which parameter is to be accessed is determined by the name, not the
number.

Function 8.13 int glbClearParamNames() clears all names assigned to oscillation pa-
rameters and returns the allocated memory.

74 CHAPTER 8. Simulating non-standard physics∗

75

Chapter 9

Experimental features∗

Here we describe experimental features currently being implemented in GLoBES. These
features have not yet been tested extensively and should be used with care. They may
evolve into standard features in the future, or they may not be supported anymore at a
certain point. In general, the number of experimental features is small in a new release
version, and increases towards a new version number.

GLoBES 3.0 and higher

One can change the minimization algorithm in GLoBES with

Function 9.1 int glbSelectMinimizer(int minimizer_ID) selects the minimizer
GLB_MIN_NESTED_POWELL, GLB_MIN_DEFAULT, or the hybrid minimizer GLB_MIN_POWELL

by the parameter minimizer_ID. GLB_MIN_NESTED_POWELL is the currently implemented
standard algorithm, GLB_MIN_DEFAULT chooses the standard algorithm at any given time,
and GLB_MIN_POWELL is a faster, yet rarely tested hybrid minimizer.

Compared to the standard minimization which is performed for systematics first and then
for the oscillation parameters, the hybrid minimizer mixes the systematics and oscillation
parameter minimizations. This method is much faster, but correlations between systemat-
ics parameters and oscillation parameters might lead to a different convergence behavior in
some situations. Thus, when switching to the hybrid minimizer in an application program,
one has to reconsider the question whether all degeneracies are found. Since one can change
the minimizer at any time, it is recommended that one cross check the minimization for
a particular experiment. The danger of modifying the convergence behavior in existing
application programs is another reason why the new, faster minimizer is still declared as
experimental and not used by default. Note that the meaning of the number of iterations
in glb_params changes for the hybrid minimizer. Since the systematics and oscillation
parameter minimizations are not strictly separated anymore, the minimizer does not count
the iterations separately, and the total number of iterations is returned. Therefore, it ap-
pears that the hybrid minimizer needs more iterations, but, in fact, the default minimizer
only counts the oscillation parameter level.

76 CHAPTER 9. Experimental features∗

77

Part II

The Abstract Experiment Definition
Language – AEDL

79

Chapter 10

Getting started

Here, the general concept of AEDL is described and illustrated by an example. In addition,
a short introduction to the syntax of AEDL is given.

10.1 General concept of the experiment simulation

The goal of AEDL is to describe a large number of complex and very different experiments
by a limited number of parameters. It allows a representation of very different setups within
one data structure, and thus implements universal rate and χ2 computation methods. For
experiment simulations, usually a new piece of code is written and compiled for each
different experiment. In many cases, even parameter changes, such as the number of bins,
require the recompilation of the source code. However, such a technique soon reaches
its limits when the simulated experiments are rather complex, or more than one type
of experiment is studied simultaneously. Furthermore, it is very difficult to verify the
correctness of the obtained results, since every time a new piece of code is added to deal
with a new experiment type, new errors will be introduced.

Thus, a general and flexible experiment description language is needed. The description
of a neutrino experiment can be split into three parts: Source, oscillation, and detection.
The neutrino sources within GLoBES are assumed to be stationary point sources, where
each experiment has only one source. This restricts the classes of neutrino sources which
can be studied with GLoBES:

• Experiments using many point-like sources can only be approximated. One example
are reactor experiments using many distant reactor blocks.

• Geometrical effects of a source distribution, such as in the sun or the atmosphere,
can not be described.

• Sources with a physically significant time dependency can not be studied, such as
supernovæ. It is, however, possible to study beams with bunch structure, since
the time dependence of the neutrino source is physically only important to suppress
backgrounds.

80 CHAPTER 10. Getting started

The description of the neutrino oscillation physics is, at least numerically, relatively
simple. We use the evolution operator method (see, e.g., Ref. [21]) to compute the neutrino
oscillation probabilities and divide the matter density profile into layers of constant matter
density. For each of these layers, the Hamiltonian in matter is diagonalized in order to
propagate the neutrino transition amplitudes. Since this step is computationally expensive,
a specialized algorithm is used [22]. Finally, the transition probability is obtained as the
absolute square of the total neutrino transition amplitudes. Depending on the precision of
the studied experiment, this approach turns out to be precise enough in Earth matter even
if only a small number of matter density steps is used. Since we allow an uncertainty of
the matter density profile, it is, in fact, in most cases sufficient to consider only one density
step with the average matter density together with a matter density uncertainty [23]. Note
that this approach may not be applicable to quickly varying extraterrestrial matter density
profiles.

While it is comparatively simple to define a general neutrino source and to compute
the oscillation physics, the general properties of a detector simulation are much more
complicated. The basic assumption in building an abstract detector description is linearity,
i.e., that two neutrino events do not interfere with each other. Furthermore it is assumed
that all information on the oscillation physics is given by the reconstructed flavor and energy
of a neutrino event. The term “reconstructed” implies that the well-defined energy of the
incident neutrino, which can not be directly observed, translates via secondary particles
and the detection properties into a distribution of possible energy values. This process
is illustrated in Fig. 10.1 for the energy variable. The same, in principle, applies to the

True Energy

Detector

Reconstructed Energy

Figure 10.1: A detector maps a true parameter value onto a distribution of reconstructed parameter
values. This is illustrated here for there energy.

nature of the neutrino flavor. However, in this case, only discrete values are applicable.
Note that the reconstructed neutrino energy and the neutrino flavor are the only observables
in GLoBES.

This picture can also be formulated in a more mathematical way. Let us define x as the
true parameter value and x′ as the reconstructed parameter value. Similarly, f(x) is the
distribution of true parameters values and p(x′) is the distribution of reconstructed param-
eter values. Then the detector function D(x, x′), which describes the mapping performed
by the detector, is given by

p(x′) =

∫
dx f(x) ·D(x, x′) . (10.1)

10.1 General concept of the experiment simulation 81

Cross

Section

Flux

Energy−

function

Initial / final

flavor, polarity

Energy

Channel

Event rates

efficiencies

dependent

Resolution

Figure 10.2: General concept of a “channel”.

Obviously Eq. (10.1) only describes the detector properly if the linearity condition is ful-
filled. Within this model, a detector is completely specified by a set of D(E,E ′) for the
energy variable E, and a set D(F, F ′) for the flavor variable F . In general, D(E,E ′, F)
also depends on the incident neutrino flavor F , as well as D(F, F ′, E) depends on the in-
cident neutrino energy E. These sets of mapping functions usually are obtained from a
full detector simulation and can be obtained by using as input distribution f(x) a delta
distribution δ(x− x0).

In order to implement an experiment definition including various sources of systematical
errors, we use several abstraction levels. The first level is the so-called “channel”, which is
the link between the oscillation physics and the detection properties for a specific oscillation
pattern (cf., Fig. 10.2). A channel specifies the mapping of a specific neutrino flavor
produced by the source onto a reconstructed neutrino flavor. For example, a muon neutrino
oscillates into an electron neutrino and subsequently interacts via quasi-elastic charged
current scattering. The measured energy and direction of the secondary electron in the
detector then allows to reconstruct the neutrino energy. The connection from the source
flux of the muon neutrino, via the probability to appear as a electron neutrino, to its
detection properties (such as cross sections and energy smearing) is encapsulated into the
channel.

The channels are the building blocks for the so-called “rules”. In general, a rule consists
of one or more “signal” and “background” oscillation channels, which are normalized with
efficiencies (cf., Fig. 10.3). The event numbers from these channels are added before the
∆χ2-value is calculated.1 In addition, each rule implements independent systematics, such

1Note that in this manual, the χ2 and ∆χ2 are equal, since for simulated data ∆χ2 = 0 at the best-fit

82 CHAPTER 10. Getting started

Signal

Background

Channel 1

Channel 2

. . .

. . .

Rule

Signal + Backgrounds

with systematics

∆χ2

Figure 10.3: General concept of a “rule”.

as signal and background normalization errors. Eventually, each rule gives a ∆χ2-value,
and the total ∆χ2 of one experiment is obtained by adding the ∆χ2’s of all rules (cf.,
Fig. 10.4). Note that each experiment shares a common matter density profile. An example
for a rule could look like this: We want to detect electron neutrino appearance (“signal”),
where the overall efficiency for quasi-elastics electron neutrino events is 0.4. There is a
fraction of 0.01 of all neutral current events which are mis-identified as quasi-elastic electron
neutrino events (“background”). The neutral current fraction is only known within 10%
(“background uncertainty”) and there is an energy scale uncertainty of 100 MeV (“energy
calibration error”). All this systematics is independent of the other rules. Thus, a rule
connects the event rates to the calculation of a ∆χ2 which properly includes systematical
errors. The resulting ∆χ2 is then the starting point for the oscillation physics analysis.
Note again that

• Within each rule, the event numbers from different channels are added.

• Within each rule, the systematics is treated independently from the other rules.

• For each rule, the ∆χ2 is computed; the ∆χ2’s from all rules are added in an experi-
ment.

Of course, an abstract experiment definition language can not simulate all possible
types of experiments. As we have seen, there are several assumptions for source and detec-
tor. However, it turns out that GLoBES can be applied to a large number of experiment

point. Thus, we are using χ2 and ∆χ2 as equal quantities.

10.2 A simple example for AEDL 83

Rule 2Rule 1 Rule 3

Experiment

Σ ∆χ2

. . .

Figure 10.4: General concept of an “experiment”.

types, such as conventional beams, superbeams, neutrino factories, β-Beams, and reactor
experiments.

10.2 A simple example for AEDL

Experiments in GLoBES are defined by the Abstract Experiment Definition Language
(AEDL). The experiment definition is written into a text file using the AEDL syntax. Cur-
rently, a number of pre-defined experiment definition files are provided with GLoBES, which
have to be modified manually in order to define new experiments. The application software
then uses this text file to initialize the experiment, where other secondary files might be
read for source fluxes, cross sections etc.. In this section, we show the definition of a very
simple neutrino factory in AEDL, where we do not go into details. In the next chapter, we
will discuss each of the individual steps in detail.

The first line of every experiment definition file has to be

!%GLoBES

in order not to confuse it with some other file format. In addition, GLoBES 3.0 and higher
requires the identification of the minimum GLoBES version the AEDL file can be used with:

$version="3.0.0"

First, we instruct GLoBES to use the built-in source flux for a neutrino factory origi-
nating from stored µ+’s. This is achieved by setting the @builtin variable to 1. Next, we
specify the muon energy to be 50 GeV by the @parent_energy variable. We assume that
there will be 5.33 · 1020 useful muon decays per year and that this luminosity is available
for 8 years, i.e., a total number of 4.264 · 1021 muons is stored:

84 CHAPTER 10. Getting started

/* beam */

nuflux(#mu_plus)<

@builtin = 1

@parent_energy = 50.0

@stored_muons = 5.33e+20

@time = 8.0

>

Note that we tell GLoBES that we want to refer to this neutrino source later as as #mu_plus.
Let us now define a very simple detector with a target mass of 50 kt and 20 energy bins
between 4 GeV and 50 GeV:

$target_mass = 50

$bins = 20

$emin = 4.0

$emax = 50.0

Then, we specify the file which contains the cross sections we want to use:

/* cross section */

cross(#CC)<

@cross_file = "XCC.dat"

>

The command cross tells the parser that a cross section environment begins. It has the
name #CC, which can later be used to refer to this specific environment, and thus to the
file XCC.dat. Note that each name begins with a leading #. Of course, the baseline and
matter profile have to be specified, too, where we use an arbitrary matter density profile
here:

/* baseline */

$profiletype = 3

$densitytab = {3.5}

$lengthtab = {3000.0}

The curly brackets used for the definition of $densitytab and $lengthtab refer to a list
of numbers. Here, the lists contain only one element each, because we only use one density
layer: We specify a baseline length of 3000 km with a constant matter density of 3.5 g/cm3.
As another ingredient, we have to define the energy resolution function:

/* energy resolution */

energy(#MINOS)<

@type = 1

@sigma_e = {0.15,0.0,0.0}

>

10.2 A simple example for AEDL 85

The energy command starts the energy environment, which has the name #MINOS here.
Out of several possibilities, it uses algorithm one, the simplest and fastest one. The actual
energy resolution is specified by the energy resolution variable, which is a list of three
elements. Each element is one parameter of the general resolution function as defined in
Eq. 11.12. Now we have all pieces to be able to define the appearance and the corresponding
disappearance channel of a neutrino factory: νe → νµ and ν̄µ → ν̄µ (µ+ stored).

/* channels */

channel(#appearance)<

@channel = #mu_plus: +: electron: muon: #CC: #MINOS

>

channel(#disappearance)<

@channel = #mu_plus: -: muon: muon: #CC: #MINOS

>

The first element is the name of the flux, which we have defined above. The second
element “±” determines whether neutrinos or anti-neutrinos are taken from the flux table
(two different polarities allowed). The third position defines the initial flavor, and the forth
position the final flavor, followed by the name of the cross section and energy resolution
function as defined before. The last step is to encapsulate the channels into a rule:

/* rules */

rule(#rule1)<

@signal = 0.45 @ #appearance

@signalerror = 0.025 : 0.0001

@background = 1.0e-05 @ #disappearance

@backgrounderror = 0.2 : 0.0001

@sys_on_function = "chiSpectrumTilt"

@sys_off_function = "chiNoSysSpectrum"

@energy_window = 4.0 : 50.0

>

The @signal refers to the “signal” in our experiment. We use the above defined channel
named #appearance with a constant overall efficiency of 0.45 (in a more realistic simulation,
one would introduce an energy threshold function). The signal error variable has two
components: The first one is the normalization error of the signal, here 2.5%. The second
one refers to the energy calibration error of the signal, which is defined in Sec. 11.5. The
background variable specifies the composition of the beam background. In this (simplified)
case, we use the fraction 1 · 10−5 of the channel named #disappearance, i.e., the muon
neutrinos with a mis-identified charge. The background error variable is defined in the
same way as the signal error variable, i.e., we have a 20% background uncertainty and a
very small energy calibration error. In addition, the systematics treatment is specified in
@sys_on_function (for systematics switched on) and @sys_off_function (for systematics
switched off) – see Table 11.3.

86 CHAPTER 10. Getting started

The experiment defined here represents a first simplified version of a neutrino factory
experiment. It still lacks the correct energy dependence of the efficiencies, the antineutrino
disappearance rule, and the channels and rules for the symmetric operation with µ− stored.
However, it may serve as a simple, introductory example. In the next chapter, we will
demonstrate that AEDL is much more powerful than illustrated here.

10.3 Introduction to the syntax of AEDL

We now give a short introduction to the syntax of AEDL. The first eight characters have
to be %!GLoBES in order to avoid parsing megabytes of chunk and producing thousands of
error messages. The minimum GLoBES version that the AEDL file is supposed to run with
has to be defined by a $version statement, such as $version="3.0.0". Furthermore,
references linked to the AEDL file can be defined with $citation="...", which can later
be retrieved with glbGetCitationForExperiment, see page 52.2 Comments can be used
in the same way as in C:

/* This starts a comment

and here the comment ends */

// Another comment

There are pre-defined variables which all start with $. Their range is also checked. For
example, $bins can be only between 0 and 500.3 If one uses a float quantity where an int

is expected, the float will be converted to an int in the same way as in C. For example,
we have scalar variables

$bins = 10

$baseline = 1200.0

and simple lists

$densitytab={1.0,2.2343,3.3432}

Since there are often groups of data which we want to refer to later, environments can be
used. This is illustrated with the channel definition part:

channel(#ch1)<

. . .
>

The first part is the type of environment, which is channel here. There are the following
types of environments in AEDL:

2Available in GLoBES 3.1.7 and higher.
3The upper limit is only there for safety reasons, the memory is allocated dynamically.

10.3 Introduction to the syntax of AEDL 87

nuflux

cross

channel

energy

rule

Besides the environment type, there is a user-defined name beginning with # in the above
example: #ch1. It can be used later to refer to the channel defined in <. . .>. Those names
are so-called “automatic variables” and have to start with #. Note that these names have
to be unique and can only be referred to after their definition. However, similar to C, one
can give a declaration without definition before:

channel(#ch2)<>

Now one can refer to the name #ch2, while the actual channel definition comes later. The
internal representation of this automatic variable is a number, which obtains its value
from a counter for each type of environment. For example, for channel the counter is
numofchannels. The counter keeps track of how many different names there are for one
type of environment, which means that it counts the number of channels, rules, energy
resolution functions, etc.. Thus, the automatic variables are numbered in the order of their
definition, and the number can later be used to refer to them in the C code (from 0 to
numof...−1). In order to facilitate the the mapping from names in AEDL to indices in C
there are two functions glbNameToValue and glbValueToName which make this transition
(see Sec. 6.2, page 52).

Within each environment type, there are several variables beginning with @, which can
only be used within the appropriate type of environment. In many cases, they have a
special syntax, such as @channel.

If you want to have several experiments in one file, separate the different experiments
by

#NEXT#

This command resets the counters for channels, rules, fluxes, cross section and energy
resolution environments. All, except named nuisance parameters (see. Sec. 11.6.1), vari-
ables have their scope limited by either %!GLoBES, #NEXT# or EOF. This allows a consistent
treatment of various experiments in one file.

If you want to have several detectors in the same beam, separate the different detectors
by

#DETECTOR#

This command resets the counters and names only for rules. All other variables have global
scope. This feature is useful to define correlated systematics for near and far detector type
setups as described in Sec. 11.6.1.

As another feature of AEDL, can use include files with the include command. Includes
can be nested up to MAX_INCLUSION_DEPTH, which is currently set to 10. Error reporting

88 CHAPTER 10. Getting started

works for nested includes, too. The included file is not required to begin with %!GLoBES

to facilitate cut and paste:

include "./file_1"

With this include mechanism, one can use constructions such as

include "Exp1.glb"

#NEXT#

include "Exp2.glb"

in order to initialize a combined analysis of the experiments defined in the files Exp1.glb

and Exp2.glb. Note that one has to use quotation marks for filenames in AEDL. Even if
one uses the automatic variable #CC in both experiments, but the cross section data are
different (for example, because of different target nuclei), the correct cross section data will
be applied to each of the experiments. Note that, alternatively, one can also load both files
successively by two separate calls of glbInitExperiment.

Furthermore, one can define constants such as

Pi = 3.14159

These constants can not only be defined within one AEDL file, but also by the calling C
program, which allows to use a simple but powerful variable substitution mechanism as
described in Sec. 7.3.

In addition, some simple algebraic manipulations are possible, such as

Pi+1

Pi^2

sin(Pi/2)

The following mathematical functions from <math.h> are available: sin, cos, tan, asin,
acos, atan, log, log10, exp, sqrt. These functions can be used everywhere, where other-
wise only a scalar number would appear.

Finally, note that a line feed character \n is necessary at the end of the input – alter-
natively you can put a comment at the end.

10.4 More advanced AEDL features∗

In GLoBES 3.0 and higher, a number of new features can be used. The most important
one are lists as variables in AEDL. They start with %, such as

%effs = { 0.2, 0.4, 0.6, 0.8, 1.0, 1.0, 1.0 }

Functions can be threaded over lists, i.e., they will be applied to each element of list, and
return a list. Note that the original list will be destroyed by this process. Therefore, it is
necessary to create a copy of your list if you want to use the original and the threading
result. For that purpose, the copy function is provided:

10.4 More advanced AEDL features∗ 89

listb = copy(lista)

listb := lista // Alternative method in environments

You will also need to use copy when you assign a list to an experiment structure (see
below).

Two helper functions bincenter() and samplingbincenter() return lists with the
central energies of the bins or sampling points, respectively. For example,

%bc=bincenter()

A very useful new features is an interpolation function which can directly interpolate a
number of points and evaluate them at a different set of places. For example,

%energ = { 4.0,20.0,50.0 }

%effs = { 0.0,1.0,1.0 }

%ires = interpolation(%energ,%effs,1,%bc)

interpolates the points with x-values %energ and y-values %effs with the interpolation
order one (linear interpolation, third parameter) and evaluates the interpolation result at
the bin centers obtained above, i.e., it returns a list of the y-values at the places specified
by the last parameter. The only allowed interpolation orders are “1” (linear) and “2”
(cubic splines). This example creates a neutrino factory energy threshold function linearly
climbing from 0 to 1 between 4 GeV and 20 GeV. It can be directly used in a channel
definition, e.g.,

channel(#nu_mu_appearance)<

@channel = #mu_plus: +: electron: muon: #CC: #MINOS

@post_smearing_efficiencies = copy(%ires)

>

To simplify debugging of lists and numbers, GLoBES now supports output directly from
AEDL files:

R = 1.15

echo(R) // Print without line feed

line(2) // Two line feeds

echon(ires) // Print with line feed

90 CHAPTER 10. Getting started

91

Chapter 11

Experiment definition with AEDL

In this chapter, we give a detailed description of the AEDL features. We also show the
underlying mathematical concepts where applicable. We do not exactly follow the separa-
tion of source, oscillation, and detection properties, since most issues more or less involve
the detection. Instead, we illustrate many of the features of the GLoBES simulation suc-
cessively in the logical order of their definition, and demonstrate how they translate into
AEDL.

11.1 Source properties and integrated luminosity

As we have discussed before, GLoBES can only deal with point sources. Thus, it is not
possible to study effects of the finite size of the neutrino production region, such as in the
sun or in reactor experiments with many neutrino sources (e.g., KamLAND). Therefore, a
neutrino source in GLoBES can, in general, be characterized by the flux spectrum for each
neutrino flavor, the CP sign (neutrinos or antineutrinos), and the total luminosity of the
source.

Before we come to the definition of the source properties, let us discuss the total inte-
grated luminosity of the experiment. In GLoBES, the total number of events is in general
proportional to the product of

N × Fid. det. mass [kt/t]× Running time [yr]×
{

Source power [MW/GW]
Useful parent decays [yr−1]

(11.1)

with N being a normalization constant. Thus, the source power corresponds to either the
amount of energy produced per time frame in the target (such as for nuclear reactors or
sources based on pion decay), or the useful parent particle decays per time frame (neutrino
factories, beta beams). In addition, the definition of the source power makes only sense
together with the flux normalization, the running time, and the fiducial detector mass
in order to define the total integrated luminosity. Therefore, one can, in principle, use
arbitrary units for these components as long as their product gives the wanted neutrino
flux. However, it is recommended to use normalizations such that the source power units are

92 CHAPTER 11. Experiment definition with AEDL

@builtin Description Parameters Min. version
1 Neutrino factory µ+ decay @parent_energy [GeV], 2.0

@stored_muons

2 Neutrino factory µ− decay @parent_energy [GeV], 2.0
@stored_muons

3 Beta beam, β+ decay @end_point [GeV], 3.0
@stored_ions,
@gamma

4 Beta beam, β− decay @end_point [GeV], 3.0
@stored_ions,
@gamma

Table 11.1: Built-in fluxes currently supported by GLoBES. For details on the beta beams, see Ref. [16].

MW for a proton-based beam, and GWthermal for a reactor experiment. Correspondingly,
the detector mass units should be kilotons for a proton-based beam, and tons for a reactor
experiment. In any case it is a good idea to document the choices made by the user by
corresponding comments in AEDL. For more details on the luminosity implementation, see
Appendix C.

The quantity which can be used to scale the overall integrated luminosity of an exper-
iment, is the fiducial detector mass. For example,

$target_mass = 50.0

defines a 50 kt detector for a neutrino factory.
There are two principal ways to initialize a neutrino flux: Either one can use a built-in

source, or one can provide a file. In both cases, a flux is defined by the environment nuflux,
such as

nuflux(#name)<

. . .
@time = 8.0

>

with a running time of 8 years. Note that the running time is used within the nuflux

environment. This feature can be used to load the neutrino and antineutrino fluxes in an
accelerator experiment separately, in order to combine them with different running times in
the respective operation modes. The name of the flux #name will later be referred to in the
channel definitions. Note that GLoBES versions older than 3.0 use the still supported flux

environment, which is different from nuflux by an undocumented normalization factor 5.2
for user-defined fluxes. This difference is explained in Appendix C.

For a built-in neutrino source, one has to specify which built-in spectrum should be
used, as well as its parameters. The software will then automatically calculate the neutrino

11.1 Source properties and integrated luminosity 93

spectrum. Note that in this case, there is no degree of freedom in the choice of the source
units. The currently available fluxes are described in Table 11.1. For example, two built-in
neutrino factory fluxes are available: µ+-decay (@builtin = 1) and µ−-decay (@builtin
= 2). In these cases, the muon energy (energy of the parent particle) has to be specified
together with the number of useful decays per year. Thus, an example to set up a neutrino
factory flux is

nuflux(#mu_plus)<

@builtin = 1

@parent_energy = 50.0

@stored_muons = 5.33e+20

@time = 8.0

>

Furthermore, two beta beam neutrino fluxes are available: inverse beta decay (@builtin
= 3, i.e. from the decay of 18Ne-isotopes) and beta decay (@builtin = 4, i.e. from the
decay of 6He-isotopes). For a beta beam file, using the beta beam built-in fluxes, the end
point energy of the decay (@end_point), the number of decays per year (@stored_muons),
and the acceleration factor of the ions γ (@gamma) have to be specified. An example for
setting up a beta beam neutrino flux from the decay of 18Ne isotopes is

nuflux(#nu_e_flux)<

@builtin = 3

@gamma = 130.0

@end_point = 0.0034

@stored_muons = 2.2e+18

@time = 4.0

>

For a user-defined flux, one has to specify the file name:

nuflux(#user)<

@flux_file = "user_file_1.dat"

@time = 2.0

@power = 4.0

@norm = 1e+8

>

In this case, the @norm variable is an overall normalization which defines a conversion factor
from the fluxes in the file to the units in GLoBES. In general, there are many ways to give
the source power of a neutrino source, such as neutrinos per proton on target per area per
time frame. Right now, each flux has its own normalization factor, which is not always
straightforward to calculate. Often, one has to take into account many things, such as the
number of target particles per unit mass. In addition, the fluxes will be rescaled by 1/L2,
which means that the normalization must contain a factor L2

0. Here L0 is the distance

94 CHAPTER 11. Experiment definition with AEDL

from the source for which the flux is given to the actual neutrino production region. At
the end, it is left to the user to ensure that the numbers in the flux file give, after the
multiplication with @norm, the proper numbers of produced neutrinos corresponding to the
chosen target power @power. Usually this adjustment of @norm is performed by comparison
with known energy spectra for a specific experiment. For more details on the flux definition,
see Appendix C.

The software assumes that the given flux file has seven columns and 501 lines1 with
equidistant energies. The format is:

E Φνe Φνµ Φντ Φν̄e Φν̄µ Φν̄τ

In order to access fluxes at arbitrary energies, linear interpolation is used by GLoBES. In
general, it is advisable to provide the flux between $sampling_min and $sampling_max

(cf., Sec. 11.5), since this is the energy range considered in the simulation. However, if part
of this interval is omitted in the flux file, zero will be used there. If some neutrino flavors
are not used in the simulation, the corresponding columns in the flux file have to be filled
nevertheless, e.g. with zeros.

The flux files accept one-line comments, which start with # and end with the linefeed
character ‘\n’, they are not counted as a line and their content is discarded. These com-
ments are useful to provide meta information about the fluxes such as units or the origin
of the information. This is also the default method to point the user to the references that
should be cited when using a particular flux file.

11.2 Baseline and matter density profile

Besides the energy and the involved flavors, the neutrino oscillation physics depends on
the baseline and the matter density profile. All neutrino oscillation parameters are defined
at running time.

The baseline is given by

$baseline = 3000.0

Note that baseline lengths are always assumed to be in kilometers.
Furthermore, the matter density profile along the baseline has to be specified. The

simplest profile is a constant matter density equal to the average matter density from the
PREM [3,4] onion shell model of the earth:

$profiletype=1

If you are using this option please cite Refs. [3, 4].
For a better approximation of the realistic earth matter density profile, one can use an

arbitrary number of equidistant steps of the PREM profile:

1The requirement of exactly 501 lines has been removed in versions 3.1.7 and higher.

11.3 Cross sections 95

$profiletype Additional variables Description
1 $baseline Average density (constant)
2 $baseline, $densitysteps PREM profile with given number of

equidistant steps
3 $lengthtab, $densitytab Arbitrary profile (table of layer thick-

nesses, table of densities)

Table 11.2: Different matter density profiles which can be used with GLoBES.

$profiletype=2

$densitysteps=20

Note that the value of $densitysteps is time-critical, since the computation time of oscil-
lation probabilities is directly proportional to the number of layers. As a third possibility,
one can specify the matter density profile manually with a list of thicknesses and densi-
ties of the matter density layers. This example uses two density steps with two different
densities:

$profiletype=3

$densitytab={2.8, 3.5}

$lengthtab={1000.0, 2000.0}

It is important that both lists have the same length and that the thicknesses given in
$lengthtab add up to the length of the baseline, which does not have to be explicitely
specified anymore. In addition, matter densities are always given in g/cm3. This approach
can also be used for a constant matter density profile with a specific matter density:

$profiletype=3

$densitytab={3.5}

$lengthtab={3000.0}

The possible options for matter density profiles are summarized in Table 11.2.

11.3 Cross sections

Cross sections will later be used as part of the channel definition (see Sec. 11.4). Similar
to the source fluxes, they are provided by the user as a data file:

cross(#name)<

@cross_file ="user_file_1.dat"

>

This cross section can later be referred to by #name.

96 CHAPTER 11. Experiment definition with AEDL

Cross sections in GLoBES are given as total cross section divided by energy:

σ̂(E) = σ(E)/E

[
10−38 cm2

GeV

]
(11.2)

The software assumes that the cross section files are text files with seven columns and 1001
lines2 of the form

log10E σ̂νe σ̂νµ σ̂ντ σ̂ν̄e σ̂ν̄µ σ̂ν̄τ

Here the logarithms of the energy values have to be equidistant. For arbitrary energies,
linear interpolation is used. If the energy leaves the range of values given in the file, 0.0 will
be assumed. In general, it is advisable to provide the cross sections in the range between
$sampling_min and $sampling_max (cf., Sec. 11.5). Cross sections for unused neutrino
flavors have to be filled with zeros, and can not just be omitted.

Like the flux files, the cross section files accept one-line comments, which start with #

and end with the linefeed character ‘\n’; they are not counted as a line and their content is
discarded. These comments are useful to provide meta information about the cross sections
like units or the origin of the information. This is also the default method to point the
user to the references he/she should cite when using a particular cross section file.

11.4 Oscillation channels

Channels in GLoBES represent an intermediate level between the pure oscillation physics
given by the oscillation probability Pαβ, and the final event rates composed of signal and
background. A channel describes the path from one initial neutrino flavor in the source
to the event rates in the detector for one specific interaction type (IT) and final flavor.
Therefore, a channel contains the description of the initial neutrino flavor, its CP eigenvalue
(neutrino or antineutrino), the detected neutrino flavor, the interaction cross sections for
the chosen interaction type, and the energy resolution function of the detector.

Before we come to the definition of channels in AEDL, we introduce the general concept
for the calculation of event rates. The first step is to compute the number of events for
each IT in the detector for each initial and final neutrino flavor and energy bin. The second
step is to include the detector effects coming from the insufficient knowledge in the event
reconstruction. The combination of these two steps leads to the differential event rate
spectrum for each initial and final flavor and IT as seen by the detector, which we call the
“channel”. In this section, we focus on the first step, i.e., we discuss the definition of the
energy resolution function in the next section, since this is a rather comprehensive issue.

2The requirement of exactly 1001 lines has been removed in versions 3.1.7 and higher.

11.4 Oscillation channels 97

The differential event rate for each channel is given by

dnIT
β

dE ′
= N

∞∫
0

∞∫
0

dE dÊ Φα(E)︸ ︷︷ ︸
Production

×

1

L2
P(α→β)(E,L, ρ; θ12, θ13, θ23,∆m

2
31,∆m

2
21, δCP)︸ ︷︷ ︸

Propagation

×

σIT
f (E)kIT

f (E − Ê)︸ ︷︷ ︸
Interaction

×

Tf (Ê)Vf (Ê − E ′)︸ ︷︷ ︸
Detection

, (11.3)

where α is the initial flavor of the neutrino, β is the final flavor, Φα(E) is the flux of the
initial flavor at the source, L is the baseline length, N is a normalization factor, and ρ is
the matter density. The energies in this formula are given as follows:

• E is the incident neutrino energy, i.e., the actual energy of the incoming neutrino
(which is not directly accessible to the experiment)

• Ê is the energy of the secondary particle

• E ′ is the reconstructed neutrino energy, i.e., the measured neutrino energy as ob-
tained from the experiment

The interaction term is composed of two factors, which are the total cross section σIT
β (E)

for the flavor f and the interaction type IT, and the energy distribution of the secondary
particle kIT

β (E− Ê). The detector properties are modeled by the threshold function Tβ(Ê),
coming from the the limited resolution or the cuts in the analysis, and the energy resolution
function Vβ(Ê − E ′) of the secondary particle.

Since it is computationally very expensive to solve this double integral numerically, we
split up the two integrations. The integral over Ê depends only on the terms containing Ê,
i.e., on kIT

β (E − Ê), Tβ(Ê), and Vβ(Ê −E ′). These terms do not depend on the oscillation

parameters, so they will not vary during the fit, and the Ê integral can be pre-computed
in the initialization phase. We define:

RIT
β (E,E ′) εITβ (E ′) ≡

∞∫
0

dÊ Tβ(Ê) kIT
β (E − Ê)Vβ(Ê − E ′) . (11.4)

Thus, RIT
β (E,E ′) describes the energy response of the detector, i.e., a neutrino with a

(true) energy E is reconstructed with an energy between E ′ and E ′ + dE ′ with a proba-
bility RIT

β (E,E ′)dE ′. The function R(E,E ′) is often called “energy resolution function”.
Actually, its internal representation in the software is a smearing matrix. The function

98 CHAPTER 11. Experiment definition with AEDL

εITβ (E ′) will later be referred to as “post-smearing efficiencies”, since it will allow us to
define cuts and threshold functions after the smearing is performed, i.e., as function of E ′.
The detailed definition and initialization of the energy resolution function is described in
Sec. 11.5.

Eventually, we can write down the number of events per bin i and channel c as

nci =

∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′
dnIT

β

dE ′
(E ′) (11.5)

where ∆Ei is the bin size of the ith energy bin. This means that one has to solve the
integral

nci = N/L2

∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′
∞∫

0

dE Φc(E)P c(E)σc(E)Rc(E,E ′) εc(E ′) . (11.6)

Note that the events are binned according to their reconstructed energy.
A simple channel definition in GLoBES consists of the flux, the CP-sign of the initial

state, the initial flavor, the final flavor, the cross sections, and the energy resolution func-
tion. In order to refer to the fluxes, cross sections, and energy resolution functions, they
have to be defined first with their #name in the respective environments. A simple definition
of a channel is

channel(#channel_1)<

@channel = #flux : +: muon: muon: #cross: #energy

>

It is also possible to define a channel as no-oscillation by using the prefix NOSC_ in either
the initial flavor or the final flavor, like this

channel(#channel_1)<

@channel = #flux : +: NOSC_muon: muon: #cross: #energy

>

In this case all diagonal probabilities Pαα are unity, and all off-diagonal probabilities Pαβ
are zero. This is, for instance, useful for neutral current events, since these do not depend
on any oscillation parameters3. The channels marked as NOSC_ are already computed by
glbSetRates and do not have to be recomputed in the subsequent fit (which calls the
undocumented function glbSetNewRates). Therefore this feature can be used to speed
up the rate computation considerably, especially in cases where a large set of channels
exist which are only used for the computation of backgrounds. Usually, it is an excellent
approximation to treat backgrounds as if they were not affected by oscillations4.

Note that the energy environment will be described in the next section. In addition,
one can define pre- and post-smearing effects together with the channels, which will also
be introduced together with the energy resolution function in the next section.

3At least in the absence of sterile neutrinos
4In the case that the backgrounds have a sizeable dependence on the oscillation parameters, they carry

information on the oscillation parameters, and therefore behave more like a signal.

11.5 Energy resolution function 99

11.5 Energy resolution function

The definition and implementation of the energy resolution function is rather sophisticated
in GLoBES. In particular, the choice of the proper parameters depends on the experiment
and the frequencies of the involved neutrino oscillations. This choice also greatly influences
the speed of the calculation.

In this section, we first discuss the principles of the energy smearing, where it is as-
sumed that the reader is familiar with Sec. 11.4. Then we introduce an automatic energy
smearing algorithm, which is fairly simple to understand and applicable to most beam-
based experiments. In most cases, the reader may want to proceed to the next section
after reading these two subsections. In the third subsection, we describe a more elaborate
(and slower) smearing algorithm, which is useful to avoid aliasing effects if the neutrino
oscillations are rather fast compared to the bin size, as is the case for (solar) reactor exper-
iments. Eventually, we show how one can use a manual smearing matrix instead of using
one of the implemented algorithms.

11.5.1 Introduction and principles

The energy resolution function Rc(E,E ′) and the post-smearing efficiencies ε(E ′) have
already been introduced in Sec. 11.4, where a definition has been given in Eq. (11.4).
Instead of using Eq. (11.4) directly, we apply a slightly different definition of the post-
smearing efficiencies ε(E ′). In general, they have to be determined by means of a Monte
Carlo simulation of the experiment. This usually involves a binning of the simulated events
in the reconstructed energy E ′. Therefore, one can simplify Eq. (11.6) by∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′Rc(E,E ′) εc(E ′) ' ε̂ci ·
∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′ Rc(E,E ′) . (11.7)

Here the ε̂ci are the binned “post-smearing” efficiencies, which will be set within the cor-
responding channel environment (see below). From Eq. (11.6) it is obvious that the
integration with respect to the reconstructed energy E ′ can be performed independently
of the oscillation parameters. We define the “bin kernel”Kc

i for the ith bin as

Kc
i (E) ≡

∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′ Rc(E,E ′) . (11.8)

With this definition, Eq. (11.6) can be re-written as

nci = N/L2 ε̂ci

∞∫
0

dE Φc(E)P c(E)σc(E)Kc
i (E)︸ ︷︷ ︸

f(E)

. (11.9)

There is no principle reason why one should not evaluate this integral directly by the
usual numerical methods. However, it turns out that this is very slow in many cases.

100 CHAPTER 11. Experiment definition with AEDL

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

@energy_window

Analysis level: Energy cut

Post−smearing efficiencies

Pre−smearing efficiencies

Reconstructed
energy

energy

$bins$emin $emax

(Energy smearing matrix

Sampling point level: Integral evaluation
$sampling_points$sampling_min $sampling_max

Incident neutrino
energy

approx. energy res.

approx. calibr. error

Reconstructed

Bin level: Defined by experiment

)

Figure 11.1: The different evaluation levels for the energy smearing in GLoBES.

Therefore, we will introduce two different approximation schemes for different applications
in the next two subsections. In either case, the integrand in Eq. (11.9) has to be evaluated
at fixed “sampling points”. These sampling points have to directly or indirectly be defined
by the user.

Before we come to the calculation algorithms, it is useful to understand the general
evaluation algorithm. As it is illustrated in Fig. 11.1, GLoBES uses several levels with
respect to the energy ranges:

Sampling point level This level is used internally to evaluate the integrand in Eq. (11.9)
at all sampling points. The energy scale is the actual incident neutrino energy E.
For a manual definition of the sampling points, use

$sampling_points = 20

$sampling_min = 4.0

$sampling_max = 50.0

for equidistant sampling points. If no values are given for these vari-
ables, they are assumed to be equal to their corresponding counterparts at
the bin level, i.e., $sampling_points = $bins, $sampling_min = $emin and
$sampling_max = $emax.

Arbitrarily spaced sampling points can be specified with $sampling_stepsize

$sampling_stepsize={1.0,2.0,3.0,4.0,5.0,...}

11.5 Energy resolution function 101

The choice of the sampling point configuration strongly depends on the experiment
and required accuracy. Ideally, the integrand of Eq. 11.9 is zero outside the sampling
range. If this cannot be achieved, it is usually sufficient that the sampling range is by
about three times the energy resolution (evaluated at $emin and $emax, respectively)
larger than the bin range. The spacing of the sampling points should be somewhat
smaller than the finest details of the integrand (a factor ' 2 usually is more than
enough).

Bin level This level is determined by the experiment and its analysis. Note that energy
bin sizes much smaller than the energy resolution will not improve the results. The
energy bin range and the number of energy bins always have to be specified. For the
case of large values of the integrand in Eq. (11.9) at the energy range limits, it is
recommended to exceed the analysis energy window by about three times the energy
calibration error in order to avoid cutoff effects. In addition, note that an energy
resolution larger than about the bin range will distribute events out of this range.
Therefore, the normalization will be affected.

In order to define a range between Emin and Emax divided by a certain number of
equidistant bins, use

$emin = 4.0

$emax = 50.0

$bins = 20

For arbitrary bins, use Emin and Emax and the size of each bin ∆Ei:

$emin = 4.0

$emax = 50.0

$binsize = { 15.0 , 5.0 , 20.0, 6.0 }

The number of bins will be automatically computed by GLoBES. Note that the bin
sizes have to add up to the energy range $emax-$emin.

The choices at bin level are mainly determined by optimizing the performance of the
experiment.

Analysis level On the analysis level, an energy window can be defined within each rule.
For details, see next chapter.

In general, the energy smearing happens between the sampling point and bin levels,
which means that the energy smearing matrix will have $sampling_points columns and
$bins rows.

As illustrated in Fig. 11.1, an interesting feature in combination with the channels are
pre- and post-smearing effects. Pre-smearing effects are taken into account on the sampling
point level, and post-smearing effects on the bin level. Examples for these effects are energy
dependent efficiencies and (non-beam) backgrounds. Efficiencies are multiplicative factors,

102 CHAPTER 11. Experiment definition with AEDL

whereas backgrounds are added to the event rates. These components can be introduced be-
fore or after the integration in Eq. (11.9) is done. If they are introduced before, we call them
@pre_smearing_efficiencies or @pre_smearing_background. If they are introduced af-
terwards, we call them @post_smearing_efficiencies or @post_smearing_background.
Note that pre-smearing components are always a function of the incident neutrino energy
E. Thus, there have to be as many elements as there are sampling points. Examples for
pre-smearing quantities are non-beam backgrounds, such as from geophysical neutrinos.
The post-smearing components are always a function of the reconstructed neutrino energy
E ′, such as the post-smearing efficiencies εITβ (E ′) in Eq. (11.4). Examples for post-smearing
efficiencies are cuts and detection threshold functions. All post-smearing components have
to have as many elements as there are energy bins. Efficiencies are multiplicative and their
default value is 1, whereas backgrounds are additive and their default value is 0. Thus, a
more elaborate channel can be defined as

channel(#channel_1)<

@channel = #flux : +: muon: muon: #cross: #energy

@pre_smearing_background = {1,2,3,4,5,6,7,8,9,10}

@post_smearing_efficiencies = {0.1,0.2,0.3,0.4,0.5}

>

This experiment uses 10 sampling points and 5 bins.
In the following subsections we will explain the energy resolution function. All energy

resolution functions are defined within an energy environment and can be referred to by
#name:

energy(#name)<

. . .
>

The individual parameters of the environment will be defined below and depend on the
algorithm used.

11.5.2 Bin-based automatic energy smearing

This algorithm is the simplest of the built-in algorithms for the evaluation of Eq. (11.9).
It is applicable to most of the experiments which can be simulated with GLoBES.

The key idea is to use a “flat” model, i.e. the integrand of Eq. 11.9 is well approximated
by being piecewise constant in each sampling step. This is a good approximation as long
as

• No details are lost, i.e. the spacing of sampling points is smaller than the energy
resolution.

• The edges are treated correctly.

• The neutrino oscillations are slow on a scale of the sampling point distance.

11.5 Energy resolution function 103

In this case, Eq. (11.9) is reduced to

nci = N/L2

N∑
j=1

Φc(Ej)P
c(Ej)σ

c(Ej)K
c
i (Ej) ∆Ej . (11.10)

The advantages of this algorithm are obvious: All factors independent of the oscillation
parameters have to be only evaluated once at values of E which are known in advance,
which means that they can be put into a look-up table. In addition, the probability has
to be only evaluated at previously known values of the energy, which makes it possible to
compute the transition amplitudes for all channels simultaneously. One assumption is that
all involved factors are piece-wise constant, i.e., they hardly change within each bin. This
assumption seems to be very restrictive, which is however not quite correct. First of all, if
one analyzes simulated data (which are simulated with the same algorithm), the errors will
cancel between the simulated and fitted data. Second, and more important, this algorithm
is just a very basic integration routine5 and converges to the true result for decreasing step
size. Thus if the number of sampling points is large enough this algorithm is very accurate.
Bin-based energy smearing is selected by

@type = 1

within the #energy environment. The computation of the bin kernel Kc
i is performed

by GLoBES. Thus, it requires that the number of bins $bins and the minimum energy
$emin and maximum energy $emax are given in case of equidistant bins. As far as the
parameterization for the energy resolution function Rc(E,E ′) in Eq. (11.8) is concerned,
the algorithm uses a Gaußian

Rc(E,E ′) =
1

σ(E)
√

2π
e
− (E−E′)2

2σ2(E) . (11.11)

There are several energy resolution functions available, where by default #standard is
used:

@sigma_function = #standard

The energy resolution function #standard is defined by

σ(E) = α · E + β ·
√
E + γ , (11.12)

where the parameters α, β and γ are provided by the user:

@sigma_e = {0.15, 0.0, 0.0}

5It is planned for the future to implement something like a Gauß-Kronrod scheme as an alternative
here.

104 CHAPTER 11. Experiment definition with AEDL

Currently, another possible choice for @sigma_function is #inverse_beta, which only
uses the parameter α. It is defined by

σ(E) =

{
α ·
√

1000
−1√

x− 8 · 10−4 , for x > 1.8 · 10−3

α · 10−3 , for x ≤ 1.8 · 10−3
(11.13)

The somewhat complicated form is due to the fact that inverse β-decay has a neutrino
threshold of 1.8 MeV and that a neutrino at threshold already produces ' 1 MeV visible
energy in the detector (for more details see e.g. [13]).

In the actual implementation of the algorithm, the sum in Eq. (11.10) is only evaluated
for the Ej’s withK(Ej) above a certain threshold, which is, by default, 10−7. This threshold
is defined at compilation time.

Eventually, a complete energy resolution definition with bin-based automatic energy
smearing is, for example,

energy(#name)<

@type = 1

@sigma_function = #standard

@sigma_e = {0.15 ,0.0 ,0.0}

>

11.5.3 Low-pass filter∗

In order to ensure that very fast oscillations do not lead to aliasing, it is possible to impose
a low-pass filter already during the calculation of the probabilities itself. This in the
meanwhile frequently used feature will be called “filter” in the following. The calculation of
oscillation probabilities is, in principle, a computation of phase differences. Restricting the
maximum admissible size of those phase differences effectively filters the high frequency
component of the oscillation probability. This idea is implemented according to

Pαβ(E) =
∑
ij

UαjU
∗
βjU

∗
αiUβie

−iΦij × e−σ2
e Φ2

ij/(2E
2) , (11.14)

where Φij := ∆m2
ijL/2E is the usual phase difference and the last term is a Gaußian filter

with width σe [GeV]; for details, see theory of neutrino oscillations with wave packets, e.g.,
Refs. [24, 25]. In fact, it can be shown that this filter corresponds to Eq. (11.11) with a
constant function σ(E) = σe. This feature works for vacuum and constant densities only,
and it is controlled by the filer state variable. In addition, σe is set by the filter value
variable:

$filter_state = 1

$filter_value = 2.0

11.5 Energy resolution function 105

would switch the filter feature on and set the width to 2.0 GeV. The setting of
$filter_state is ignored whenever a density profile with more than one layer is used.

With a type 1 (@type = 1) energy resolution function, σe contributes to the energy
resolution function of the detector σc(E) according to

σeff(E)2 ' σ2
e + σc(E)2 . (11.15)

Sometimes this behavior is unwanted, and therefore one can try to ’subtract’ the filtering
from the energy resolution function by splitting the energy resolution function σ(E)eff into
two parts by

σeff(E)2 = σc(E)2 − σ2
e︸ ︷︷ ︸

σ̃2
c (E)

+σ2
e , (11.16)

where the truncated energy resolution function σ̃c(E) is used instead of σc(E) in computing
the smearing data. Thus one obtains as effective energy resolution

σeff(E)2 ' σc(E)2 . (11.17)

This scheme is used by choosing as type for the energy resolution

@type = 2

11.5.4 Manual energy smearing∗

In some cases, one may want to use the output of a detector Monte Carlo simulation
directly. Then one can use ”manual” energy smearing instead of the automatic energy
smearing algorithms.

The energy smearing matrix Kij has $bins rows and $sampling_points columns,
which are numbered from 0 to $bins−1 resp. $sampling_points−1. It is equivalent to
the bin- and sampling-point-based kernel in Eq. (11.8):

Kij = Kc
i (E)|E=Ej , (11.18)

where Ej is the energy of the jth sampling point. In general, many of the entries in this
matrix are zero, which means that it is convenient to evaluate the integrand in Eq. (11.9)
only at positions where Kij is non-zero. The corresponding “sampling range” of non-zero
matrix entries in Kij for the ith energy bin is defined to run from column kil (“lower index”)
to column kiu (“upper index”). An example for a smearing matrix is

Kij =

a00 a01 a02 a03

a10 a11 a12 a13 a14

a21 a22 a23 a24 a25

a32 a33 a34 a35 a36

a43 a44 a45 a46 a47

↑ . . . ↑
kil kiu

︸ ︷︷ ︸

$sampling points columns

← $bins rows , (11.19)

106 CHAPTER 11. Experiment definition with AEDL

where the un-shown entries are zero. Thus, the values of Kij have to be specified between
kil and kiu in the form {kil , kiu, Ki kil

, Kikil+1, . . . , Kikiu
}:

energy(#name)<

@energy = {0,2, 0.8634265, 0.0682827, 4e-06}:

{0,4, 0.1507103, 0.6965592, 0.1507103, 0.00101, 1e-07}:

. . .
{40,42, 0.1507103, 0.6965592, 0.1507103};

>

The last line has to be terminated by a semicolon ‘;’. Note that the sum of all entries
in each column should be equal to unity, since all of the incoming neutrinos should be
assigned to energy bins. In many practical cases, however, the definition of the energy
smearing can lead to sums smaller than unity, such as in the case of truncated Gaußian
distributions. The sum of entries in each row is not defined, since the events might be
unevenly distributed into the energy bins according to the energy resolution function.

11.6 Rules and the treatment of systematics

The set of rules for an experiment is the final link between the event rate computation and
the statistical analysis. The information in the rules specifies how the χ2 is computed based
upon the raw event rates given by the channels and possible systematical errors. Therefore a
rule has two parts: The first part describes how signal and background events are composed
out of the channels, and the second part specifies which systematical errors are considered,
as well as their values. For a rule, the splitting into signal and background is useful for the
treatment of systematics, as we will see later. Each rule will lead to a ∆χ2-value, which
means that all ∆χ2’s of the different rules will be added for the whole experiment. Within
each rule, the event rates are added, and the systematics is considered to be independent
of the other rules (unless user-defined systematics specifies a dependence). Thus, it is
convenient to combine the previously defined channels for different oscillation patterns and
interaction types into one logical construction, which is the rule. For example, a superbeam
usually has two rules: One for the νe-appearance rates, and one for the νµ-disappearance
rates. In each case, contributions of several interaction types, as well as from the νe-
contamination of the beam will lead to a number of contributing signal and background
event channels.

For each rule, the signal event rate si in the ith bin can be composed out of one or
more channels according to

si = αcs1 · ncs1i + αcs2 · ncs2i + . . . (11.20)

where the α’s are overall normalization factors/efficiencies determined by the properties
of the detector. Note that bin-based (energy-dependent) efficiencies can be defined with
the post-smearing efficiencies in the last section. In addition, note that in most cases, it

11.6 Rules and the treatment of systematics 107

makes sense to have only one signal channel and to assign all sorts of perturbations to the
background. Similarly, the background event rate bi in the ith bin can be composed out of
one or more channels:

bi = βcb1 · n
cb1
i + βcb2 · n

cb2
i + . . . , (11.21)

where the channels can be any combination of the ones in the signal rate and additional
ones. The background normalization factors very often have a specific meaning. For
example, they may correspond to a fraction of mis-identified events (charge or flavor mis-
identification). These basic building blocks of each rule are, within the rule environment,
for example defined by

@signal = 0.5 @ #channel_1

@background = 0.001 @ #channel_2 : 0.005 @ #channel_3

For the analysis of the systematical errors, the so called “pull method” is used [26]6. For
the pull method, k systematical errors are included by introducing k additional variables
ζk, which are the so-called “nuisance parameters”. The nuisance parameters describe the
dependence of the event rates on the various sources of systematical errors. For example, an
error on the total normalization is included by multiplying the expected number of events
in each bin by a factor (1 + ζ1). The variation of ζ1 in the fit is constrained by adding
a penalty p1 to the χ2-function. In case of a Gaußian distributed systematical error, this
penalty is given by

pi =
ζ2
i

σ2
ζi

, (11.22)

where σζi is the standard deviation of the corresponding nuisance parameter. In the fol-
lowing, we will refer to the standard deviation as the “error”, since it corresponds to the
actual systematical uncertainty. Note that the central values of all penalties are zero in
GLoBES 3.0 and higher. The resulting χ2 is then minimized with respect to all nuisance
parameters ζi, which leads to χ2

pull

χ2
pull(λ) := min

{ζi}

(
χ2(λ, ζ1, . . . , ζk) +

k∑
j=1

pj(ζj)

)
. (11.23)

Here λ refers to the oscillation parameters including the matter density ρ. One advantage
of the pull method is that whenever the number N of data points is much larger than k,
it is numerically easier to compute χ2

pull than to invert the N ×N covariance matrix. For
the experiments considered here, N is typically 20 and k ∼ 4, which means that the pull
method is numerically much faster. Moreover, it is more flexible and allows the inclusion of
systematical errors also for a Poissonian χ2-function. In Ref. [26], it has been demonstrated
that the pull method and the covariance based approach are equivalent for a Gaußian and
linear model. In general, there is a separate (χ2

pull)
r for each rule r, i.e., pair of signal

and background spectra, with a separate set of nuisance parameters ζri . Thus, χ2
pull is the

6In fact the pull method was employed already in Ref. [7] before Ref. [26] appeared.

108 CHAPTER 11. Experiment definition with AEDL

sum of all individual (χ2
pull)

r’s. By the minimization, the dependence on the k nuisance
parameters is eliminated from χ2

pull.
Now, we can introduce the different systematical errors. The two most important and

most easily parameterized systematical errors are the normalization and energy calibration
errors. These errors are assumed to be independent between the signal events and the
background events, which means that this systematics treatment defines the grouping into
signal or background. The implementation of the normalization error is straightforward:

si(a) := (1 + a) · si (11.24)

with an analogous definition for the background events. Here, a is the“nuisance”parameter,
which will be minimized over later.

For the parameterization of an energy calibration error, two possibilities are imple-
mented. The first one (method “T”) is somewhat simpler, whereas the second one (method
“C”) is more accurate, but it requires a careful choice of parameters. The first option
(method “T”) is7

si(a, b) ≡ si(a) + b · si (E ′i − Ē ′)/(E ′max − E ′min), (11.25)

where E ′min and E ′max correspond to $emin and $emax, Ē ′ = 1
2
(E ′max +E ′min) is the median

of this energy interval, and E ′i is the mean (reconstructed) energy of the ith bin. This
method is often referred to as a “tilt” of the spectrum, since it describes a linear distortion
of the event rate spectrum. It also works for a variable bin width. The second option
(method “C”) is closer to an actual energy calibration error, which means that one should
test this option whenever one suspects a large impact of this systematical error. It is based
upon replacing the events in the ith bin by the ones at the energy (1 + b) ·E ′i. If the target
energy does not exactly hit a (discrete) bin energy Ek, linear interpolation is used. We use
the following approximation:

si(a, b) = (1 + b) · [(sk+1(a)− sk(a)) · (δ − k) + sk(a)] , (11.26)

δ = b · (i+ t0 + 1/2) + i ,

k = div(δ, 1) ,

t0 = E ′min/∆E0 .

Here, ∆E0 is the bin width ($emax-$emin)/$bins, and “div” refers to the integer part of
the division. It is important to keep in mind that this definition of the energy calibration
error makes sense only for constant bin widths, so the corresponding χ2 functions should
not be used in conjunction with the $binwidth directive. The factor (1 + b) in Eq. (11.26)
comes from a renormalization of the bin width, since also the bin width is altered by the
replacement of the energies. Furthermore, special attention has to be given to the limits
k < 1 or k+ 1 > Nbins, since there sk or sk+1 may not have been calculated. By default, it
is assumed that sk is zero in those cases. However, if the event rates are still large at the

7Note that this behavior has slightly changed compared to previous GLoBES releases.

11.6 Rules and the treatment of systematics 109

Systematics function a b c d Tilt/Calibr. Dim. Remarks

Standard systematics:
chiSpectrumTilt + + + + T 0 Systematics with tilt
chiNoSysSpectrum - - - - - 2 No systematics, but

spectral information
chiTotalRatesTilt + + + + T 4 Total rates
chiSpectrumOnly ∞ - - - - 7 Spectrum only
chiNoSysTotalRates - - - - - 8 Total rates, no syst.
chiSpectrumCalib + + + + C 9 Systematics with calibr.
User-defined systematics:
chiZero - - - - - n/a Passive rule

(χ2 returns zero)
Any other name User-defined behavior n/a User-defined syst.

Table 11.3: Possible systematics χ2 functions in GLoBES and their meaning. If a parameter is designated
with +, it will be marginalized over, and therefore the corresponding error needs to have a non-zero value.
In the cases with “total rates” in the remarks, the summation over the bins is performed before computing
the χ2, i.e., no spectral information is used. The function chiSpectrumOnly leaves the normalization free
(σa = σc =∞), and therefore only the spectral information is used. As a consequence, the settings for the
normalization error will be ignored (designated with the symbol ∞). In addition, the corresponding error
dimension from earlier versions of GLoBES is shown in the column “Dim.”.

limits, this will introduce errors, leading to a wrong estimate of the impact of the calibration
error. In this case, one should truncate the analysis range by a few bins at the boundaries
and thus ensure that only those si, whose index k is within the range 0, . . . , Nbins − 1 (cf.,
Fig. 11.1), are used. Therefore, it is possible to constrain the analysis energy range with
each rule to an energy window:

@energy_window = 4.0 : 50.0

The default energy window is given by the minimal and maximal reconstructed energies
$emin and $emax. To be on the safe side, one should reduce the analysis window compared
to the bin range on each side by about three times the energy calibration error.

Eventually, the total event rate xi in a bin i is given by

xi(a, b, c, d) = si(a, b) + bi(c, d) , (11.27)

and is thus a function of four parameters. The four parameters a, b, c, d have been in-
troduced in order to describe systematical uncertainties and are the nuisance parameters.
Each of the four parameters has a corresponding systematical error. They are called signal
normalization (a), signal tilt/calibration (b), background normalization (c) and background
tilt/calibration (d). Their default (central) values are zero.8 The errors for the normaliza-

8The old parameter @backgroundcenter should not be used anymore. A background normalization
center of 1.0 will be interpreted as zero central value.

110 CHAPTER 11. Experiment definition with AEDL

tion and the values of tilt/calibration are always regarded as pairs, i.e., they are given in
the form normalization : tilt. For example, we have

@signalerror = 0.001 : 0.01

@backgrounderror = 0.001 : 0.01

The user has the possibility to choose the set {ζi} of nuisance parameters which are mini-
mized over. This choice is specified with the systematics functions sys_on_function and
sys_off_function corresponding two systematics modes “systematics on” and “systemat-
ics off”.9 The different possibilities are shown in Table 11.3. Since the dual systematics
modes define the behavior of the experiment for systematics on and off, it is useful to have
a matching pair of systematics functions for each rule (see also Sec. 7.1). The signal and
background errors specified by @signalerror and @backgrounderror will then be used, if
applicable. For example, one may define

@signalerror = 0.001 : 0.01

@backgrounderror = 0.001 : 0.01

@sys_on_function = "chiSpectrumTilt"

@sys_off_function = "chiNoSysSpectrum"

For user-defined systematics (see, Sec. 3.2), one can use arbitrary names for the system-
atics functions which are not pre-defined. In this case, one would specify the systematical
errors in lists, such as

@sys_on_function = "chiMySystematics"

@sys_on_errors = { 0.2, 0.3, 0.5 } // Uses three syst. errors

@sys_off_function = "chiNoSysSpectrum"

@sys_off_errors = { }

Note that here, the systematics on and systematics off models can be used as two different,
fully functional systematics modes with different systematical errors. The interpretation
of the systematical errors in @sys_on_errors and @sys_off_errors is left to the applica-
tion software code and the user. In addition, the application software has to register the
user-defined systematics χ2 function with glbDefineChiFunction and uniquely identify
the name given by @sys_on_function or @sys_off_function to avoid confusing different
systematics routines. In addition, it is possible to define a rule with passive systematics
using glbChiZero. In this case, the contribution to χ2 from this rule will always be set to
zero, but the corresponding rate vectors will be calculated and provided for indirect access
by other systematics functions. For example, a reactor experiment with correlated system-
atics between near and far detectors may define the user-defined systematics chiReactor

for the far detector and use chiZero for the near detector. The routine assigned to the
far detector will then perform the χ2 calculation, which, of course, also involves the rates
of the near detector. However, defining chiReactor in both the near and far detectors

9In earlier versions before GLoBES 3.0 the “error dimension” was used. The corresponding parameters
errordim_sys_on and errordim_sys_off are still supported but should not be used anymore.

11.6 Rules and the treatment of systematics 111

would result in a double call of the χ2 function, i.e., the resulting χ2 would be too large
by a factor two and the program would be slower by a factor of two. Note that mixed dec-
larations of @sys_on_errors, @sys_off_errors, @signalerror, and @backgrounderror

are possible. In this case, @sys_on_errors and @sys_off_errors have priority. In ad-
dition, @sys_on_errors and @sys_off_errors can be used for built-in systematics in
the order: signal normalization, signal tilt (energy calibration), background normalization,
background tilt (energy calibration). If one or both of these are not present, @signalerror
or @backgrounderror will be used.

Eventually, a complete rule may look like this:

rule(#rule_1)<

@signal = 0.5 @ #channel_1

@background = 0.001 @ #channel_2 : 0.005 @ #channel_3

@signalerror = 0.001 : 0.01

@backgrounderror = 0.001 : 0.01

@sys_on_function = "chiSpectrumTilt"

@sys_off_function = "chiNoSysSpectrum"

@energy_window = 4.0 : 50.0

>

11.6.1 Systematics correlated across experiments and rules*

In many cases the simple rule-based style of systematics is sufficient, but there are cases,
notably DUNE and almost all modern reactor experiments, where a more fine-grained
systematics implementation is necessary. The way to accomplish is to introduce named
nuisance parameters:

sys(#norm)<

@systype=0

@error = 0.02

>

@systype defaults to 0, a common multiplicative nuisance parameter. @systype can
also be set to 1 where this becomes a energy calibration error as described in Sec. 11.5.

In this case we introduced a nuisance parameter #norm with an error of 0.02 and a
central value of 1. These named nuisance parameters now can be used in the definition of
a rule:

rule(#NU_E_Disappearance)<

@signal = 0.4@#nu_e__U235 : 0.3@#nu_e_Pu239

@sys_on_multiex_errors_sig = {#norm,#fx235} : {#norm,#fx239}

@background = 0.1@#nu_e_bg

@sys_on_multiex_errors_bg = {#bgnorm}

112 CHAPTER 11. Experiment definition with AEDL

@sys_on_function = "chiMultiExp"

@sys_off_function = "chiNoSysSpectrum"

>

The key here is the line @sys_on_multiex_errors_sig ={#norm,#fx235}:

{#norm,#fx239} , where the tag @sys_on_multiex_errors_sig is invoked to sig-
nal the use of this feature and each { ...} contains all named nuisance parameters
applicable to the corresponding part of @signal definition; the same syntax applies to
@sys_on_multiex_errors_bg for the @background part of the rule. @sys_on_function

= "chiMultiExp" ensures that the appropriate χ2-function is used to handle named
nuisance parameters.

Now this very same technique can be used in different rules of the same experiment but
also in rules defined in different experiments. All instance of the named parameter, in this
example #norm, will be fully correlated. In the context of near/far-detector experiments also
the #DETECTOR# directive is interesting since it allows to reuse flux, channel etc. definitions
seamlessly. It is important that all named parameters have been defined using the sys<>

environment before they are used. It is good practice to put all sys<> definitions in one
file and to include this file into all subsequent AEDL files.

Sometimes, systematics are energy dependent and this can be implemented within the
same framework as

sys(#norm)<

@energy_list ={ 0.002,0.005,0.006,0.009}

@error_list = {0.02,0.01,0.005,0}

>

This effectively introduces 1 nuisance parameter in the fit which varies the rate by 0.02
at 0.002 GeV and by 0.01 at 0.005 GeV asf. fully correlated among all energies. For bin
center energies between the support points in @energy_list linear interpolation is used.
Both lists need to have the same number of elements.

11.6.2 Fitting actual experimental data*

The framework presented so far is general enough to achieve an accurate description of
real experiments and thus, the user may want to fit actual data with GLoBES. This can be
conveniently achieved by using

rule(#foo)<

all the usual definitions of a rule

@data_flag=1

@data={1.23,2.34,3.45,...,42}

>

11.6 Rules and the treatment of systematics 113

where @data is a list of the actual data which needs to have $bins elements and the
@data_flag can be use to turn fitting of this data on (1) or off (0).

In some cases a non-standard oscillation probability calculation may be required, to in-
clude for instance the size of the neutrino production region. This requires to use the mech-
anism to define an oscillation engine and to name it, this is done with DefineOscEngine

and to then call the corresponding name from withing AEDL, which is accomplished with
the $oscillation_engine directive. Note, that the scope of $oscillation_engine is not
limited by #DETECTOR#.

114 CHAPTER 11. Experiment definition with AEDL

115

Chapter 12

Testing & debugging of AEDL files

AEDL is a powerful language to describe a variety of different experiments. This chapter
demonstrates how to test an AEDL file in order to check if it really describes a given
experiment. For this application, the GLoBES package contains the program globes. It
can either be regarded as an AEDL debugger, or as a simple command-line oriented tool to
convert the rather abstract AEDL experiment description into more accessible event rates.

12.1 Basic usage of the globes binary

The globes binary is installed together with the library, but into the directory
$prefix/bin/. In order to use the globes utility, this directory has to be in the path
of the shell used to call the program.1

As an argument, globes takes a .glb-file. While parsing it, it prints any warnings and
errors which occur while reading the file. Then it uses the experiment description in the
file to compute the event rates at a certain point in parameter space. Finally, it displays
the result based on the options used to call globes. The options of globes follow the GNU
standard. Thus, there is a --help option to display all other options together with short
descriptions.

Calling globes without any options and with a .glb-file as argument produces an event
summary at rule level. In this case, the full experiment description in the file is taken into
account, i.e., all efficiencies, backgrounds, and energy resolution effects. Thus, the returned
event rates are the ones which will be actually used to compute the χ2 later. By default,
the oscillation parameters used to calculate the transition probability are

sin2 2θ12 = 0.8 ∆m2
21 = 7 · 10−5 eV2 ,

sin2 2θ23 = 1.0 ∆m2
31 = 3 · 10−3 eV2 ,

δ = 0 sin2 2θ13 = 0.1 . (12.1)

1This is automatically the case if no options are given to configure, and make install was executed
with root-privilege, i.e., a standard installation was done.

116 CHAPTER 12. Testing & debugging of AEDL files

Of course, it is possible to change these default values either by using the option -p on a
call by call basis, or by setting the environment variable GLB_CENTRAL_VALUES:

globes -p’0.55,0,0.785,0,0.0008,0.0025’

globes --parameters=’0.55,0,0.785,0,0.0008,0.0025’

For example, GLB_CENTRAL_VALUES can be defined within the shell session or in the shell
profile:

export GLB_CENTRAL_VALUES=’0.55,0,0.785,0,0.0008,0.0025’

Note that in the case of additional non-standard parameters, these can not be included
in globes (the command behaves as for the standard three-flavor case, since otherwise a
re-compilation of the software were necessary). Furthermore it is possible to switch off
oscillations with the -N option and to switch them on again with -O (the default). The
effect of -N is the same as to use NOSC_ in all oscillation channels. This feature is useful
if one wants to normalize the flux in an experimental to a given number of un-oscillated
events.

The AEDL parser and interpreter have basically three levels of messages to the user:
Warnings, errors and fatal errors. Fatal errors are always reported and lead to a program
exit with status ’1’. Usually only errors and no warnings are reported. The verbosity level
can be chosen by the -v option, where -v1 is default, i.e., only errors and fatal errors
are reported. The level -v0 corresponds to reporting fatal errors only, and -v2 will print
warnings in addition to fatal errors. It is recommended to test any new .glb-file with -v2

to check the warnings at least once, and to decide whether there is a problem to be fixed.
With -v3 all files read by globes are displayed together with their path, and with -v4

all files which have been attempted to be read are shown. These two setting are useful to
clarify path resolution issues and shadowing of file names.

12.2 Testing AEDL files

In the process of defining a new experiment, the default output of globes at rule level is
the final step. However, in order to arrive at this level it is often necessary to review the
intermediate steps in the event rate calculation. The globes utility offers many possibilities
to do this based on the rate access functions described in Sec. 6.3.

By default, globes returns total rates corresponding to the -t option. This can be
changed to to a full spectrum by using -s. The spectral rates are shown in a table where
the first column always gives the central energy of the corresponding bin or the sampling
point.

If there is more than one experiment in a file, i.e., there is at least one #NEXT# command,
only the event rates for one experiment will be shown. This experiment can be chosen with
the -e option, which takes as a mandatory argument the number of the experiment (starting
with zero). The default is -e0.

12.2 Testing AEDL files 117

Channel level

As a first step, one may want to check if each channel produces the anticipated output.
Channel rates are returned if the -c option is used. This option takes as an optional
argument the channel number (starting at zero). If no argument is given, all channels are
displayed. By default, the sum of the event rates in each channel is shown. Each column
has as first line the same channel name as in the file.

It is also possible to switch off one detector effect after the other. First, one can switch
off the post-smearing efficiencies (-f) and the post-smearing backgrounds (-g). Next,
one can switch off the energy resolution function with (-b) and view the rates before
smearing. If the -s option is also used, the number of lines in the output will be given by
$sampling_points. Another effect of the -b option is that the post-smearing efficiencies
and backgrounds are no longer taken into account. Therefore, the -g and -f options now
apply to the pre-smearing efficiencies and the pre-smearing backgrounds. Thus,

globes -c -b -g -f FILE

produces the raw event rate corresponding to the convolution of flux, probability, and cross
section, neglecting all detector effects.

Rule level

The next logical step after checking the channel rates is to investigate the rule rates. The
rule rates are returned with the option -r. This option takes as an optional argument the
rule number (starting at zero). If no argument is given, all rules will be displayed. By
default, the signal and background rates in each rule are shown separately, together with
their decomposition into the different contributing channels. Each rule is preceeded by a
line with the same rule name as in the file.

Also for the rules, it is possible to switch off one detector effect after the other – with
the limitation that rules only make sense after the energy resolution function has been
applied to each channel. Therefore, it is not possible to use -b together with -r, or to
switch off any pre-smearing efficiencies or backgrounds. One can, however, switch off the
post-smearing efficiencies (-f) and the post-smearing backgrounds (-g) for each channel.
Since the definition of a rule also contains so-called “coefficients”, it is possible to switch
them off with -i.

Output

The default output stream is stdout. The output can be re-directed to a file using the -o

option, which takes as mandatory argument the file name. The default output format aims
at maximal readability for a human eye. In many cases however, the output of globes is
produced as input for other programs. There are some features to adjust the output format.
Usually one would like to omit the channel and rule names by using simple printing -S

instead of pretty printing -P.

118 CHAPTER 12. Testing & debugging of AEDL files

There are special options for certain special formats: -m produces Mathematica2 list
output, which can be directly visualized by MultipleListPlot. The option -u uses in
principle the same formatting as -m, but it allows to specify the left, middle, and right
delimiters in constructing the list, such as

left

left 1 middle 2 middle 3 right

middle

left

left 1 middle 2 middle 3 right

right

This is, with left = ’{’, middle = ’,’ and right = ’}’, equivalent to the list
{{1, 2, 3}, {1, 2, 3}}. The delimiters can be set by -L, -M and -R as in the following example:

globes -Su -R$’\n’ --Middle=" " -L" " ...

Here $’\n’ is the escape sequence in the shell for ANSI C-like characters, such as linefeed
’\n’. The above example produces a a two column file such as

1.0 0.12
1.2 0.14
1.3 0.18
...

where the first column is the central energy of the bin or the sampling point, and the
second column gives the event rate. Usually, the output is a concatenation of many such
two columns tables, where each rule part or channel part has its own table. Thus one can,
by using -u and user-defined delimiters, construct many different output formats.

AEDL external variable substitution∗

Some .glb-files use external AEDL variables in order to allow special purpose studies (such
as the energy resolution-dependence). If the external variables are not explicitely specified,
they are interpreted by the parser as zeros. Thus, it is impossible to properly parse any
files with globes which contain such undefined variables. Hence, there is the possibility to
define AEDL variables by using the define option -D. The example

globes -DBASELINE=3000 -D%BLUE=\{8, 15\} ...

defines the AEDL variable BASELINE to be 3000 and the AEDL variable list %BLUE to be
{8,15} (please note the syntax for the brackets!).

2Mathematica is a trademark of Wolfram Inc.

119

Acknowledgments

We would like to thank Martin Freund, who wrote the very first version of a three-flavor
matter profile treatment many years ago, and Thomas Schwetz, who has been pushing the
software to the edge in the past few years. Furthermore, we would like to thank Tommy
Ohlsson, Toshihiko Ota, and Julian Skrotzki for using and testing unpublished new features
of the software. PH is especially thankful for the invaluable advice of Thomas Fischbacher
on many design issues in the early stage of the project. Finally, thanks to all the people
who have been pushing this project for many years, to the ones who have been continuing
asking for the publication of the software, and the referees of several of our papers for
suggestions which lead to improvements in the software.

This work and the development of GLoBES have over the years been supported by (in
chronological order):

• Technische Universität München [All authors]

• Max-Planck-Institut für Physik, München [PH]

• Sonderforschungsbereich 375 für Astro-Teilchenphysik
der Deutschen Forschungsgemeinschaft [All authors]

• Studienstiftung des Deutschen Volkes [JK, WW]

• Institute for Advanced Study, Princeton [WW]

• W. M. Keck Foundation [WW]

• National Science Foundation [WW]

• University of Wisconsin, Madison [PH]

• Max-Planck-Institut für Kernphysik, Heidelberg [JK, ML]

• Emmy Noether-Programm der Deutschen Forschungsgemeinschaft [WW]

• Universität Würzburg [WW]

• US Department of Energy under award number DE-SC0003915 [PH]

120 CHAPTER 12. Testing & debugging of AEDL files

121

Appendix A

GLoBES installation

A.1 Prerequisites for installation of GLoBES

Besides the usual things like a working libc you need to have

gcc The GNU compiler collection
gcc.gnu.org

GSL The GNU Scientific Library
www.gnu.org/software/gsl/

The library libglobes should in principle compile with any C/C++ compiler but the
globes binary uses the argp facility of glibc to parse its command line options. However,
on platforms where argp is lacking, GLoBES has replacement code, thus it should also work
there. GLoBES is, however, using the C99 standard in order to handle complex numbers,
but that is the only feature of C99 used.

GSL is also available as rpm’s from the various distributors of GNU/Linux, see their web
sites for downloads. Chances are that gcc and GSL are already part of your installation. For
building GLoBES from source, however, not only working libraries for the above packages
are needed, but also the headers, especially for GSL. For some installations of GSL, eg. on
RedHat/Fedora, this may require to additionally install a rpm-package named gsl-devel.
If GSL has been installed from the tar-ball as provided by gnu.org, no problems should
occur. Furthermore you need a working make to build and install GLoBES.

A.2 Installation Instructions

GLoBES follows the standard GNU installation procedure. To compile GLoBES you will
need an ANSI C-compiler. After unpacking the distribution, the Makefiles can be prepared
using the configure command,

./configure

You can then build the library by typing,

122 CHAPTER A. GLoBES installation

make

A shared version of the library will be compiled by default.
The libraries and modules can be installed using the command,
make install

The install target also will install a program with name globes to /usr/local/bin

The default install directory prefix is /usr/local. Consult the ”Further Information”
section below for instructions on installing the library in another location or changing other
default compilation options.

Moreover a config-script called globes-config will be installed. This script displays
all information necessary to link any program with GLoBES. For building static libraries
and linking against them see the corresponding section of this file.

Basic Installation

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses those values to create a Makefile in each direc-
tory of the package. It may also create one or more .h files containing system-dependent
definitions. Finally, it creates a shell script config.status that you can run in the future
to recreate the current configuration, a file config.cache that saves the results of its tests
to speed up reconfiguring, and a file config.log containing compiler output (useful mainly
for debugging configure).

If you need to do unusual things to compile the package, please try to figure out how
configure could check whether to do them, and mail diffs or instructions to the address
given in the README so they can be considered for the next release. If at some point
config.cache contains results you don’t want to keep, you may remove or edit it.

The file configure.in is used to create configure by a program called autoconf. You
only need configure.in if you want to change it or regenerate configure using a newer
version of autoconf.

The simplest way to compile this package is:

1. cd to the directory containing the package’s source code and type ./configure to
configure the package for your system. If you’re using csh on an old version of System
V, you might need to type sh ./configure instead to prevent csh from trying to
execute configure itself.

Running configure takes awhile. While running, it prints some messages telling
which features it is checking for.

2. Type make to compile the package.

3. Type make install to install the programs and any data files and documentation.

4. You can remove the program binaries and object files from the source code directory
by typing make clean. To also remove the files that configure created (so you

A.2 Installation Instructions 123

can compile the package for a different kind of computer), type make distclean.
There is also a make maintainer-clean target, but that is intended mainly for the
package’s developers. If you use it, you may have to get all sorts of other programs
in order to regenerate files that came with the distribution.

5. Since you have installed a library don’t forget to run ldconfig!

Installation without root privilege

Install GLoBES to a directory of your choice GLB_DIR. This is done by
configure --prefix=GLB_DIR

and then follow the usual installation guide. The only remaining problem is that you have
to tell the compiler where to find the header files, and the linker where to find the library.
Furthermore you have to make sure that the shared object files are found during execution.
Running configure also produces a Makefile in the examples subdirectory which can serve
as a template for the compilation and linking process, since all necessary flags are correctly
filled in. Another solution is to set the environment variable LD_RUN_PATH during linking
to GLB_DIR/lib/. Best thing is to add this to your shell dot-file (e.g. .bashrc). Then you
can use: A typical compiler command like

gcc -c my_program.c -IGLB_DIR/include/

and a typical linker command like
gcc my_program.o -lglobes -LGLB_DIR/lib/ -o my_executable

More information on this issue can be obtained by having a look into the output of make
install.

CAVEAT: It is in principle possible to have many installations on one machine, espe-
cially the situation of having an installation by root and by a user at the same time might
occur. However it is strictly warned against this possibility since it is extremely likely to
create some versioning problem at some time!

Building and Using static versions of GLoBES

Under certain circumstances it may be useful to use a static version of libglobes or any of
the binaries, e.g. when running on a cluster.

The configure script accepts the option --disable-shared, in which case only static
objects are built, i.e. only a static version of libglobes. In case your system does not support
shared libraries the configure script recognizes this. If you give no options to configure,
both shared and static versions are built and will be installed. All binaries, however, will
use dynamic linking. If you want to build static binaries, use LDFLAGS=’-all-static’ for
building them.

Sometimes it is convenient, eg. for debugging purposes, to have a statically linked
version of a program using GLoBES, which is easiest achieved by just linking with
libglobes.a. If you need a completely statically linked version, please, have a look at

124 CHAPTER A. GLoBES installation

the Makefile in the examples directory.
make example-static

produces a statically linked program that should in principle run on most Linuxes. It
should be straightforward to adapt this example to your needs.

All these options rely on a working gcc installation. It seems that gcc 3.x is broken in
a subtle way which makes it necessary to add a symbolic link in the gcc library directory.
The diagnostic for this requirement is that building static programs fails with the error
message cannot find -lgcc_s. In those cases, find libgcc.a and add a symbolic link in
the same directory where you found it (this requires probably root privileges)

ln -s libgcc.a libgcc_s.a

If you can not write to this directory just use the following work around. Add the same
link as above to the directory where you installed GLoBES into

cd prefix/lib

ln -s path_to_libgcc.a/libgcc.a libgcc_s.a

and then change back into the examples directory and type
make LDFLAGS=-Lprefix/lib example-static

and you are done.

GLoBES and Condor

Condor is a specialized workload management system for compute-intensive
jobs. Like other full-featured batch systems, Condor provides a job queuing
mechanism, scheduling policy, priority scheme, resource monitoring, and re-
source management.

A Condor (www.cs.wisc.edu/condor/) cluster is very well suited to run large GLoBES-
based computation. The nature of the problems addressed with GLoBES is such that one
typically ends up with a so called ’embarrassingly parallel’ program. That means, that one
repeats the same task N times, where each execution is independent of the other N − 1.
Therefore, this execution should become M times faster if one uses M processors. For this
class of problems running on a dedicated cluster will not improve performance (but may
reduce latency and such).

In order to fully exploit the functionality offered by Condor one should submit the jobs
into the so called ’standard universe’. To do this, it is necessary to re-link the application
with the Condor-library (this assumes that Condor is installed)

condor_compile gcc your_object_files -static ‘globes-config --libs‘

It may be necessary to prefix the call of globes-config with the path to it, in case that
this location is not in $PATH.

A.2 Installation Instructions 125

GSL requirements

Sometimes, the GNU scientific library is not available or is installed in a non-standard
location. This situation can arise in an installation without root privileges. In this case,
one can specify --with-gsl-prefix=path_to_gsl as option to the configure script. If
one wants to use a shared version of libgsl then one has to make sure that the linker
can find the library at run-time. This can be achieved by setting the environment variable
LD_LIBRARY_PATH correctly, i.e. (in bash)

export LD_LIBRARY_PATH=’path_to_gsl’

You also can use a static version of GSL by either building GLoBES with
LDFLAG=’-all-static’ or by configuring GSL with --disable-shared. In both cases
no further actions like setting any environment variables is necessary.

Distributions

RedHat (all versions)

The standard rpm-based installation of GSL does not provide any header files for GSL,
which are however needed to compile GLoBES. You have to install an additional rpm-
package called gsl-devel. Alternatively you can install GSL from a tar-ball and use the
--with-gsl-prefix option to the configure script of GLoBES.

Platforms

GLoBES builds and installs on 64bit Linux systems. GLoBES should work on Mac OS.

Windows

Currently GLoBES is only able to work under Cygwin www.cygwin.com. Inside Cygwin
GLoBES needs to be built with these commands

configure

make LDFLAGS=-no-undefined’

Compilers and Options

Some systems require unusual options for compilation or linking that the configure script
does not know about. You can give configure initial values for variables by setting them
in the environment. Using a Bourne-compatible shell, you can do that on the command
line like this

CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure

126 CHAPTER A. GLoBES installation

Or on systems that have the env program, you can do it like this
env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by
placing the object files for each architecture in their own directory. To do this, you must
use a version of make that supports the VPATH variable, such as GNU make. cd to the
directory where you want the object files and executables to go and run the configure

script. configure automatically checks for the source code in the directory that configure
is in and in ...

If you have to use a make that does not supports the VPATH variable, you have to compile
the package for one architecture at a time in the source code directory. After you have
installed the package for one architecture, use make distclean before reconfiguring for
another architecture.

Installation Names

By default, make install will install the package’s files in /usr/local/bin,
/usr/local/man, etc. You can specify an installation prefix other than /usr/local by
giving configure the option --prefix=PATH.

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you give configure the option --exec-prefix=PATH,
the package will use PATH as the prefix for installing programs and libraries. Documenta-
tion and other data files will still use the regular prefix.

In addition, if you use an unusual directory layout you can give options
like --bindir=PATH to specify different values for particular kinds of files. Run
configure --help for a list of the directories you can set and what kinds of files go
in them.

If the package supports it, you can cause programs to be installed with an extra prefix
or suffix on their names by giving configure the option --program-prefix=PREFIX or
--program-suffix=SUFFIX.

Optional Features

Some packages pay attention to --enable-FEATURE options to configure, where FEATURE

indicates an optional part of the package. They may also pay attention to --with-PACKAGE

options, where PACKAGE is something like gnu-as or x (for the X Window System). The
README should mention any --enable- and --with- options that the package recognizes.

For packages that use the X Window System, configure can usually find the X in-
clude and library files automatically, but if it doesn’t, you can use the configure options

A.2 Installation Instructions 127

--x-includes=DIR and --x-libraries=DIR to specify their locations.

Building a perl extension

This feature is experimental and your mileage may vary!

This feature allows to build a perl binding of GLoBES i.e. you will in the end have a
perl module from which you can use GLoBES from within any perl program.

If(!) everything works as intended, all you have to do is to provide --enable-perl

to configure and type make install. Now have a look at globes/example.pl and you
should see how that works in principle.

The trick here is, that we use SWIG (www.swig.org) to generate a wrapper file for
GLoBES. The wrapper file is part of the GLoBES tar-ball (globes/globes_perl.c) and
hence you should not need SWIG to be installed on your system.

All the tricks employed to get perl extension working should in some form be applicable
to building other extensions, like python. If you want to try that you will need SWIG.

Building RPMs

This feature is experimental and your mileage may vary!

Many people find binary RPMs useful, therefore we provide an optional feature
--enable-rpm-rules which should produce all the necessary Makefile rules for RPM build-
ing. To actually build RPMs requires that your system is properly setup for that. You can
learn how to do that at http://www.rpm.org. You then can use make rpm, most likely
you will need to be root to do that (sudo won’t work!).

NOTE to people packaging GLoBES RPMs: Please, use the provided spec file and do
include the headers!

Specifying the System Type

There may be some features configure can not figure out automatically, but needs to
determine by the type of host the package will run on. Usually configure can figure that
out, but if it prints a message saying it can not guess the host type, give it the --host=TYPE
option. TYPE can either be a short name for the system type, such as sun4, or a canonical
name with three fields

CPU-COMPANY-SYSTEM

See the file config.sub for the possible values of each field. If config.sub isn’t included
in this package, then this package doesn’t need to know the host type.

If you are building compiler tools for cross-compiling, you can also use the
--target=TYPE option to select the type of system they will produce code for and the
--build=TYPE option to select the type of system on which you are compiling the package.

128 CHAPTER A. GLoBES installation

Sharing Defaults

If you want to set default values for configure scripts to share, you can create a
site shell script called config.site that gives default values for variables like CC,
cache_file, and prefix. configure looks for PREFIX/share/config.site if it exists,
then PREFIX/etc/config.site if it exists. Or, you can set the CONFIG_SITE environment
variable to the location of the site script. A warning: not all configure scripts look for a
site script.

129

Appendix B

Catalogue of AEDL-Files

Along with the GLoBES package comes a catalogue of pre-defined experiment AEDL files for
different future experiments and different beam and detector technologies. These include
the planned superbeam experiments and their possible upgrades, different reactor exper-
iment setups, different β-beam setups, and different neutrino factory setups. A complete
list of all pre-defined experiment files can be found in Table 2.1. More detailed descriptions
of the corresponding files, the assumptions, requirements, and references are given in the
following.

B.1 Superbeam Experiments

Experiment File Runtime Power Baseline Detector Mass

T2K T2K.glb 2 yr ν/6 yr ν̄ 0.77 MW 295 km WC 22.5 kt
T2HK T2HK.glb 4 yr ν/4 yr ν̄ 4 MW 295 km WC 500 kt
NOνA NOvA.glb 3 yr ν/3 yr ν̄ 1.12 MW 812 km TASD 25 kt
SPL SPL.glb 2 yr ν/8 yr ν̄ 4 MW 130 km WC 500 kt

T2K – T2K.glb

The T2K experiment can be simulated with the file T2K.glb. This file tries to approxi-
mate as closely as possible the LOI [6], and the basic version was used within [7]. These
references should be cited if the file T2K.glb is used for a scientific publication or a talk.
For calculations that involve T2K.glb, the following additional files are required:

• JHFplus.dat (neutrino flux from J-PARC – νµ)

• JHFminus.dat (neutrino flux from J-PARC – ν̄µ)

• XCC.dat (charged current cross sections)

• XNC.dat (neutral current cross sections)

130 CHAPTER B. Catalogue of AEDL-Files

• XQE.dat (quasi elastic cross sections)

The T2K neutrino beam is produced at J-PARC and directed towards the Super-
Kamiokande detector. The target power is 0.77 MW and 2 years ν-running and 6 years
ν̄-running is assumed. The fiducial mass of the Super-Kamiokande Water Cerenkov detec-
tor is taken to be mdet = 22.5 kt at a baseline of L = 295 km. The appearance measurement
involves the total rates data from all CC events and the spectral data from the QE sample
with a free normalization at an energy resolution of σe = 0.085 GeV due to the Fermi Mo-
tion. The normalization of the QE samples is kept free in order to avoid double counting
of events since all QE events are also contained in the CC samples. The free normalization
is introduced within a rule with the line @signalerror = 10.:0.0001. In case of sys-
tematics switched on the systematics functions chiSpectrumTilt for the QE sample and
chiTotalRatesTilt for the CC sample are used. However, for systematics switched off,
only the systematics function for the CC sample is changed to chiNoSysTotalRates, but
the systematics function for the QE sample stays chiSpectrumTilt. Note, that otherwise
the free normalization would be switched off and all events from the QE sample would be
counted twice. A detailed discussion of this QE/CC sample splitting can be found in [7].
For the disappearance channels only the QE sample is used since statistics is already quite
large and a treatment as for the appearance channels would only slightly modify the re-
sults. The quantitative treatment of systematics is similar to [27]. The following rules are
defined within T2K.glb:

Disappearance (+) σnorm σcal

Signal 0.9 ⊗ (νµ → νµ)QE 0.025 10−4

Background 0.0056 ⊗ (νµ → νx)NC 0.2 10−4

Appearance (+) – Spectrum
Signal 0.505 ⊗ (νµ → νe)QE 10.0 10−4

Background 0.0056 ⊗ (νµ → νx)NC 3.3 · 10−4 ⊗ (νµ → νµ)CC 0.05 0.05
Beam background 0.505 ⊗ (νe → νe)CC 0.505 ⊗ (ν̄e → ν̄e)CC 0.05 0.05

Appearance (+) – Total Rates
Signal 0.505 ⊗ (νµ → νe)CC 0.05 10−4

Background 0.0056 ⊗ (νµ → νx)NC 3.3 · 10−4 ⊗ (νµ → νµ)CC 0.05 10−4

Beam background 0.505 ⊗ (νe → νe)CC 0.505 ⊗ (ν̄e → ν̄e)CC 0.05 10−4

Disappearance (–)
Signal 0.9 ⊗ (νµ → νµ)QE 0.025 10−4

Background 0.0056 ⊗ (νµ → νx)NC 0.2 10−4

B.1 Superbeam Experiments 131

Appearance (–) – Spectrum σnorm σcal

Signal 0.505 ⊗ (ν̄µ → ν̄e)QE 10.0 10−4

Background 0.0056 ⊗ (ν̄µ → ν̄x)NC 3.3 · 10−4 ⊗ (ν̄µ → ν̄µ)CC 0.05 0.05
Beam background 0.505 ⊗ (ν̄e → ν̄e)CC 0.505 ⊗ (νe → νe)CC 0.05 0.05

Appearance (–) – Total Rates
Signal 0.505 ⊗ (ν̄µ → ν̄e)CC 0.05 10−4

Background 0.0056 ⊗ (ν̄µ → ν̄x)NC 3.3 · 10−4 ⊗ (ν̄µ → ν̄µ)CC 0.05 10−4

Beam background 0.505 ⊗ (ν̄e → ν̄e)CC 0.505 ⊗ (νe → νe)CC 0.05 10−4

T2HK – T2HK.glb

T2HK is the superbeam upgrade of the T2K experiment and can be simulated with the
file T2HK.glb. The target power is 4 MW and 4 years ν-running and 4 years ν̄-running is
assumed. The fiducial mass of the Water Cerenkov detector is taken to be mdet = 500 kt
at the same baseline as the T2K experiment. Besides these changes, the file T2HK.glb is
similar to T2K.glb and the same additional files are required. The basic version was used
within [7] which should be cited if the file T2K.glb is used for a scientific publication or a
talk.

NOνA – NOvA.glb

The NOνA experiment can be simulated with the file NOvA.glb. The description of the
disappearance channels is taken from [9] and the description of the appearance channels
follows the proposal [8]. These references should be cited if the file NOvA.glb is used for
a scientific publication or a talk. For calculations that involve NOvA.glb, the following
additional files are required:

• NOvAplus.dat (NuMI neutrino flux – νµ)

• NOvAminus.dat (NuMI neutrino flux – ν̄µ)

• XCC.dat (charged current cross sections)

• XNC.dat (neutral current cross sections)

The NOνA experiment uses a neutrino beam from the Fermilab NuMI beamline. The
source power is 1021 pot yr−1, corresponding to a (naively computed) target power of
1.12 MW. For the running times, 3 years ν-running and 3 years ν̄-running are assumed. The
fiducial mass of the Totally Liquid Scintillator Detector (TASD) is taken to be mdet = 25 kt
at a baseline of L = 812 km approximately 12 km off-axis to the beamline. The energy
resolution is σe = 10% ·

√
E for electrons and σe = 5% ·

√
E for muons. The following rules

are defined within NOvA.glb:

132 CHAPTER B. Catalogue of AEDL-Files

Disappearance (+) σnorm σcal

Signal 0.8 ⊗ (νµ → νµ)CC 0.05 0.025

Background 0.0015 ⊗ (νµ → νx)NC 0.05 0.025

Appearance (+)
Signal 0.24 ⊗ (νµ → νe)CC 0.05 0.025

Background 0.0015 ⊗ (νµ → νx)NC 1.0 · 10−4 ⊗ (νµ → νµ)CC 0.05 0.025
Beam background 0.12 ⊗ (νe → νe)CC 0.05 0.025

Disappearance (–)
Signal 0.8 ⊗ (ν̄µ → ν̄µ)CC 0.05 0.025

Background 0.0015 ⊗ (ν̄µ → ν̄x)NC 0.05 0.025

Appearance (–)
Signal 0.37 ⊗ (ν̄µ → ν̄e)CC 0.05 0.025

Background 0.0037 ⊗ (ν̄µ → ν̄x)NC 1.0 · 10−4 ⊗ (ν̄µ → ν̄µ)CC 0.05 0.025
Beam background 0.12 ⊗ (ν̄e → ν̄e)CC 0.05 0.025

SPL - SPL.glb

The SPL experiment can be simulated with the file SPL.glb. This file was used in [10]
and follows the experiment description from [11, 12]. These references should be cited if
the file SPL.glb is used for a scientific publication or a talk. For calculations that involve
SPL.glb, the following additional files are required:

• SPLplus.dat (neutrino flux from CERN – νµ)

• SPLminus.dat (neutrino flux from CERN – ν̄µ)

• Mig_WC_numu.dat (migration matrix – νµ)

• Mig_WC_numubar.dat (migration matrix – ν̄µ)

• Mig_WC_nue.dat (migration matrix – νe)

• Mig_WC_nuebar.dat (migration matrix – ν̄e)

• XCC_spl.dat (charged current cross sections)

• XNC_spl.dat (neutral current cross sections)

The SPL experiment uses a neutrino beam from the CERN to Fréjus. The target power
is 4 MW and 2 years ν-running and 8 years ν̄-running is assumed. The fiducial mass of
the Water Cerenkov detector is taken to be mdet = 500 kt at a baseline of L = 130 km.

B.2 Reactor Experiments 133

The energy resolution is introduced manually by four migration matrices (for νe, ν̄e, νµ, ν̄µ)
that describe energy smearing due to Fermi Motion. The following rules are defined within
SPL.glb:

Disappearance (+) σnorm σcal

Signal 1.0 ⊗ (νµ → νµ)CC (energy dep. efficiency) 0.02 10−4

Background 4.3 · 10−5 ⊗ (νµ → νµ)CC 0.02 10−4

Appearance (+)
Signal 0.707 ⊗ (νµ → νe)CC 0.02 10−4

Background 6.5 · 10−4 ⊗ (νµ → νx)NC 5.4 · 10−4 ⊗ (νµ → νµ)CC 0.02 10−4

0.7 ⊗ (ν̄µ → ν̄e)CC 0.02 10−4

Beam Background 0.677 ⊗ (ν̄e → ν̄e)CC 0.707 ⊗ (νe → νe)CC 0.02 10−4

Disappearance (–)
Signal 1.0 ⊗ (ν̄µ → ν̄µ)CC (energy dep. efficiency) 0.02 10−4

Background 4.3 · 10−5 ⊗ (ν̄µ → ν̄µ)CC 0.02 10−4

Appearance (–)
Signal 0.677 ⊗ (ν̄µ → ν̄e)CC 0.02 10−4

Background 0.0025 ⊗ (ν̄µ → ν̄x)NC 5.4 · 10−4 ⊗ (ν̄µ → ν̄µ)CC 0.02 10−4

0.7 ⊗ (νµ → νe)CC 0.02 10−4

Beam Background 0.677 ⊗ (ν̄e → ν̄e)CC 0.707 ⊗ (νe → νe)CC 0.02 10−4

B.2 Reactor Experiments

Experiment File Runtime th. Power Baseline Det. Mass

Small Reactor1.glb 5 yr ν̄ 4 GW 1.7 km LS 20 t
Large Reactor.glb 8 yr ν̄ 10 GW 1.7 km LS 100 t
Double Chooz D-Chooz_near.glb 5 yr ν̄ 2×4.2 GW 0.1 km LS 10.16 t

D-Chooz_far.glb 5 yr ν̄ 2×4.2 GW 1.05 km LS 10.16 t

Small Reactor Experiment – Reactor1.glb

The file Reactor1.glb allows to simulate a small ν̄e-disappearance reactor experiment. The
basic version of this file was used within [13] which should be cited if the file Reactor1.glb
is used for a scientific publication or a talk. For calculations that involve Reactor1.glb,
the following additional files are required:

• Reactor.dat (neutrino flux from reactor)

134 CHAPTER B. Catalogue of AEDL-Files

• XCCreactor.dat (charged current cross sections for low energies)

The neutrino source is the core of a nuclear power reactor. The integrated luminosity is
assumed to be L = 400 t GW yr, such as for a 20 t detector, a reactor with a thermal power
of 4 GW, and a running period of 5 years. As detector technology, a liquid scintillator
detector is assumed, a far detector at a baseline of L = 1.7 km and a near detector which is
assumed to be identical to the far detector (maybe apart from the size) in order to minimize
the impact of systematical uncertainties. The near detector is simulated implicitly by
lower effective systematical errors, and there are no external backgrounds assumed. The
normalization error used in the file Reactor1.glb has to be considered as an effective error,
receiving contributions from individual uncertainties (see Ref. [13]). The energy resolution
is σe = 5% ·

√
Evis and the choice for @sigma_function is #inverse_beta. The following

rules are defined within Reactor1.glb:

Disappearance σnorm σcal

Signal 1.0 ⊗ (ν̄e → ν̄e)CC 0.008 0.005

Background 5.8 · 10−5 ⊗ (ν̄e → ν̄e)CC 10−6 10−6

Large Reactor Experiment – Reactor2.glb

The file Reactor2.glb allows to simulate a large ν̄e-disappearance reactor experiment. The
basic version of this file was used within [13] which should be cited if the file Reactor2.glb
is used for a scientific publication or a talk. The integrated luminosity is assumed to be
L = 8000 t GW yr, e.g. a 100 t detector, a reactor with a thermal power of 10 GW and
a running period of 8 years. Besides the higher integrated luminosity, the attributes of
Reactor2.glb are similar to the ones of Reactor1.glb.

Double Chooz – D-Chooz_near.glb and D-Chooz_far.glb

The files D-Chooz_near.glb and D-Chooz_far.glb allow to simulate the DoubleChooz
reactor experiment in France. They require user-defined systematics and GLoBES 3.0
or higher, where the user-defined systematics function can be found in the header of
D-Chooz_near.glb or example5.c. The basic versions of these files were used within [14],
which should be cited if the files D-Chooz_near.glb and D-Chooz_far.glb are used for
a scientific publication or a talk. For calculations that involve D-Chooz_near.glb and/or
D-Chooz_far.glb, the following additional files are required:

• Reactor.dat (neutrino flux from reactor)

• XCCreactor.dat (charged current cross sections for low energies)

The DoubleChooz experiment is located at the Chooz reactor complex, and the two
reactor cores serve as ν̄e neutrino source, so the thermal power is 2 · 4.2 GW. Two identical
liquid scintillator detectors with a fiducial mass of mdet = 10.16 t are used as near and far

B.3 Beta Beam Experiments 135

detector. The far detector is planned to be located in the Chooz cavern at a baseline of
L = 1.05 km from the two reactor cores and the near detector is assumed to be located at a
distance of 0.1 km to the cores. The total running time of the experiment is assumed to be
5 years. So, the integrated luminosity at the far detector yields L ≈ 427 t GW yr. Here, the
total running time of 5 years is assumed within D-Chooz_near.glb and D-Chooz_far.glb,
so near and far detector are assumed to start the mode of operation simultaneously. For
the simulation of DoubleChooz and considering a delayed start of data taking at the near
detector the file D-Chooz_near.glb has to be modified. The cancellation of systematical
uncertainties is considered by the manual definition of a χ2 as described in [14] with the
treatment of user-defined systematics as described in Sec. 3.2 The energy resolution is
σe = 5% ·

√
Evis and the choice for @sigma_function is #inverse_beta. The following

rules are defined within D-Chooz_near.glb and D-Chooz_far.glb:

Disappearance σflux σNfid σFfid σNcal σFcal

Signal 1.0 ⊗ (ν̄e → ν̄e)CC 0.02 0.006 0.006 0.005 0.005

Background neglected (sys. dominates) – – – – –

B.3 Beta Beam Experiments

Experiment File Runtime γ Baseline Det. Mass

Low γ BB_100.glb 4 yr ν/4 yr ν̄ 100 130 km WC 500 kt
Medium γ BB_350.glb 4 yr ν/4 yr ν̄ 350 730 km WC 500kt
Variable γ BBvar_WC.glb 4 yr ν/4 yr ν̄ variable variable WC 500 kt
Variable γ BBvar_TASD.glb 4 yr ν/4 yr ν̄ variable variable TASD 50 kt

CERN-Fréjus Baseline Scenario – BB_100.glb

The γ = 100 β-beam baseline scenario from CERN to Fréjus can be simulated with the file
BB_100.glb. The basic version of this file was used within [10]. This reference should be
cited if the file BB_100.glb is used for a scientific publication or a talk. For calculations
that involve BB_100.glb, the following additional files are required:

• BB100flux_Ne.dat (β-beam neutrino flux – 18Ne stored at γ = 100)

• BB100flux_He.dat (β-beam neutrino flux – 6He stored at γ = 100)

• BeamBckg_100.dat (beam background)

• AtmBckg_100.dat (atmospheric background)

• Mig_WC_numu.dat (migration matrix – νµ)

• Mig_WC_numubar.dat (migration matrix – ν̄µ)

136 CHAPTER B. Catalogue of AEDL-Files

• Mig_WC_nue.dat (migration matrix – νe)

• Mig_WC_nuebar.dat (migration matrix – ν̄e)

• XCC_Nuance.dat (charged current cross sections)

• XNC_Nuance.dat (neutral current cross sections)

• Null.dat (auxiliary file)

The neutrino beam is produced at CERN and directed towards a a megaton Water
Cerenkov detector at Fréjus. The neutrinos originate from the decays of accelerated iso-
topes 18Ne (νe) and 6He (ν̄e). The acceleration factor is γ = 100 for both types of isotopes
and 2.2 · 1018 18Ne decays per year and 5.8 · 1018 6He decays per year are assumed. The
CERN-Fréjus baseline is L = 130 km, the fiducial mass of the detector is mdet = 500 kt and
4 years ν-running and 4 years ν̄-running are assumed. The energy resolution is introduced
manually by four migration matrices (for νe, ν̄e, νµ, ν̄µ) that describe the energy smearing
due to Fermi Motion. The following rules are defined within BB_100.glb:

Disappearance – 18Ne stored σnorm σcal

Signal 0.707 ⊗ (νe → νe)CC 0.02 10−4

Background 4.3 · 10−5 ⊗ (νe → νe)CC 0.02 10−4

Appearance – 18Ne stored
Signal 1.0 ⊗ (νe → νµ)CC (energy dep. efficiency) 0.02 10−4

Background 1.0 ⊗ (νe → νx)NC (from external file) 0.02 10−4

Atm. background (from external file) 0.02 10−4

Disappearance – 6He stored
Signal 0.677 ⊗ (ν̄e → ν̄e)CC 0.02 10−4

Background 4.3 · 10−5 ⊗ (ν̄e → νe)CC 0.02 10−4

Appearance – 6He stored
Signal 1.0 ⊗ (ν̄e → ν̄µ)CC (energy dep. efficiency) 0.02 10−4

Background 1.0 ⊗ (ν̄e → ν̄x)NC (from external file) 0.02 10−4

Atm. background (from external file) 0.02 10−4

Higher Gamma Scenario – BB_350.glb

A γ = 350 medium gamma β-beam scenario involving a megaton Water Cerenkov detector
can be simulated with the file BB_350.glb. This file tries to approximate as closely as
possible the scenario Setup III from [15]. This reference should be cited if the file BB_350.glb
is used for a scientific publication or a talk. For calculations that involve BB_350.glb, the
following additional files are required:

B.3 Beta Beam Experiments 137

• BB350flux.dat (β-beam neutrino flux – γ = 350)

• NeEffMig350.dat (migration matrix – νµ)

• NeBckgRej350.dat (migration matrix – background)

• NeDisEff350.dat (migration matrix – νe)

• HeEffMig350.dat (migration matrix – ν̄µ)

• HeBckgRej350.dat (migration matrix – background)

• HeDisEff350.dat (migration matrix – ν̄e)

• XCC.dat (charged current cross sections)

• XNC.dat (neutral current cross sections)

The neutrinos originate from the decays of accelerated isotopes 18Ne (νe) and 6He (ν̄e).
The acceleration factor is γ = 350 for both types of isotopes and 2.2 · 1018 18Ne decays per
year and 5.8 · 1018 6He decays per year are assumed. The ion acceleration would require
either a refurbished SPS (with superconducting magnets) or a more powerful accelerator,
such as the Tevatron or LHC. The baseline is L = 730 km, the fiducial mass of the de-
tector is mdet = 500 kt and 4 years ν-running and 4 years ν̄-running are assumed. The
energy resolution is introduced manually by six migration matrices (for νe, ν̄e, νµ, ν̄µ, and
the background from NC events for 18Ne and 6He) that describes energy smearing. These
migration matrices also already include energy dependent efficiencies and background re-
jection factors. They are taken from the appendix of [15]. The following rules are defined
within BB_350.glb:

Disappearance – 18Ne stored σnorm σcal

Signal 1.0 ⊗ (νe → νe)CC (migration matrix) 0.025 10−4

Background neglected (systematic uncertainty dominates) – –

Appearance – 18Ne stored
Signal 1.0 ⊗ (νe → νµ)CC (migration matrix) 0.025 10−4

Background 1.0 ⊗ (νe → νx)NC (migration matrix) 0.05 10−4

Disappearance – 6He stored
Signal 1.0 ⊗ (ν̄e → ν̄e)CC (migration matrix) 0.025 10−4

Background neglected (systematic uncertainty dominates) – –

Appearance – 6He stored
Signal 1.0 ⊗ (ν̄e → ν̄µ)CC (migration matrix) 0.025 10−4

Background 1.0 ⊗ (ν̄e → ν̄x)NC (migration matrix) 0.05 10−4

138 CHAPTER B. Catalogue of AEDL-Files

Variable Beta Beam (Water Cerenkov) – BBvar_WC.glb

A variable β-beam scenario involving a megaton Water Cerenkov detector can be simulated
with the file BBvar_WC.glb. The basic file was used within [16]. This reference should be
cited if the file BBvar_WC.glb is used for a scientific publication or a talk. For calculations
that involve BBvar_WC.glb, the following additional files are required:

• BckgMig_var.dat (migration matrix – background)

• XCC.dat (charged current cross sections)

• XNC.dat (neutral current cross sections)

• XQE.dat (quasi elastic cross sections)

and the values of the following AEDL-Variables have to be set:

• gammafactor (acceleration factor γ)

• EXP_FACTOR (parameter of ion decay scaling)

• baselinefactor (baseline parameter L/γ [km])

The neutrinos originate from the decays of accelerated isotopes 18Ne (νe) and 6He (ν̄e). The
acceleration factor is γ =gammafactor for both types of isotopes and (100/γ)α · 2.2 · 1018

18Ne decays per year and (60/γ)α · 5.8 · 1018 6He decays per year are assumed where
α = EXP_FACTOR is a parameter that describes ion decay scaling. As default value
EXP_FACTOR=0 should be chosen. Technically EXP_FACTOR can be chosen completely free,
but the value should not deviate far from zero to stay meaningful. See [16] for a detailed
discussion of this parameter. The γ value has to be chosen above 50. BBvar_WC.glb

is optimized for γ . 350 but should be satisfactory up to γ = 500. The baseline is
L = baselinefactor·γ km, the fiducial mass of the detector is mdet = 500 kt and 4 years
ν-running and 4 years ν̄-running are assumed. The AEDL-Variable baselinefactor must
be chosen such that the baseline lies in the interval 1 km . L . 2 · REARTH. The appear-
ance measurement involves the total rates data from all CC events and the spectral data
from the QE sample with a free normalization at an energy resolution of σe = 0.085GeV
due to the Fermi Motion identical to the treatment of systematics within the T2K and
T2HK files. Note, that here also the systematics function for the appearance sample is
chiSpectrumTilt in case of systematics on and off to avoid double counting of the QE
events for systematics switched off. The following rules are defined within BBvar_WC.glb:

Disappearance – 18Ne stored σnorm σcal

Signal 0.55 ⊗ (νe → νe)QE 0.025 10−4

Background 0.003 ⊗ (νe → νx)NC 0.05 10−4

B.3 Beta Beam Experiments 139

Appearance – 18Ne stored – Spectrum σnorm σcal

Signal 0.55 ⊗ (νe → νµ)QE 10.0 10−4

Background 0.003 ⊗ (νe → νx)NC 0.05 10−4

Appearance – 18Ne stored – Total Rates
Signal 0.55 ⊗ (νe → νµ)CC 0.025 10−4

Background 0.003 ⊗ (νe → νx)NC 0.05 10−4

Disappearance – 6He stored
Signal 0.75 ⊗ (ν̄e → ν̄e)QE 0.025 10−4

Background 0.0025 ⊗ (ν̄e → ν̄x)NC 0.05 10−4

Appearance – 6He stored – Spectrum
Signal 0.75 ⊗ (ν̄e → ν̄µ)QE 10.0 10−4

Background 0.0025 ⊗ (ν̄e → ν̄x)NC 0.05 10−4

Appearance – 6He stored – Total Rates
Signal 0.75 ⊗ (ν̄e → ν̄µ)CC 0.025 10−4

Background 0.0025 ⊗ (ν̄e → ν̄x)NC 0.05 10−4

Variable Beta Beam (TASD) – BBvar_TASD.glb

A variable β-beam scenario involving a NOνA-like TASD detector can be simulated with
the file BBvar_TASD.glb. The basic file was used within [16]. This reference should be cited
if the file BBvar_TASD.glb is used for a scientific publication or a talk. For calculations
that involve BBvar_TASD.glb, the following additional files are required:

• XCC.dat (charged current cross sections)

• XNC.dat (neutral current cross sections)

and the values of the following AEDL-Variables have to be set:

• gammafactor (acceleration factor γ)

• EXP_FACTOR (parameter of ion decay scaling)

• baselinefactor (baseline parameter L/γ [km])

The neutrinos originate from the decays of accelerated isotopes 18Ne (νe) and 6He (ν̄e). The
acceleration factor is γ =gammafactor for both types of isotopes and (100/γ)α · 2.2 · 1018

18Ne decays per year and (60/γ)α · 5.8 · 1018 6He decays per year are assumed where
α = EXP_FACTOR is a parameter that describes ion decay scaling. As default value

140 CHAPTER B. Catalogue of AEDL-Files

EXP_FACTOR=0 should be chosen. Technically EXP_FACTOR can be chosen completely free,
but the value should not deviate far from zero to stay meaningful. See [16] for a detailed
discussion of this parameter. The γ value has to be chosen above 80. The baseline is
L = baselinefactor·γ km, the fiducial mass of the detector is mdet = 50 kt and 4 years
ν-running and 4 years ν̄-running are assumed. The AEDL-Variable baselinefactor must
be chosen such that the baseline lies in the interval 1 km . L . 2 · REARTH. The energy
resolution is σe = 6% ·

√
E for electrons and σe = 3% ·

√
E for muons. The following rules

are defined within BBvar_TASD.glb:

Disappearance – 18Ne stored σnorm σcal

Signal 0.2 ⊗ (νe → νe)CC 0.025 10−4

Background 0.001 ⊗ (νe → νx)NC 0.05 10−4

Appearance – 18Ne stored
Signal 0.8 ⊗ (νe → νµ)CC 0.025 10−4

Background 0.001 ⊗ (νe → νx)NC 0.05 10−4

Disappearance – 6He stored
Signal 0.2 ⊗ (ν̄e → ν̄e)CC 0.025 10−4

Background 0.001 ⊗ (ν̄e → ν̄x)NC 0.05 10−4

Appearance – 6He stored
Signal 0.8 ⊗ (ν̄e → ν̄µ)CC 0.025 10−4

Background 0.001 ⊗ (ν̄e → ν̄x)NC 0.05 10−4

B.4 Neutrino Factory Experiments

Experiment File Runtime Eµ Baseline Det. Mass

Standard NFstandard.glb
4 yr ν
4 yr ν̄

50 GeV 3000 km MID 50 kt

Variable Eµ NFvar.glb
4 yr ν
4 yr ν̄

variable variable MID 50 kt

Gold+Silver NF_GoldSilver.glb
4 yr ν
4 yr ν̄

variable variable
MID
ECC

50 kt
5 kt

Hybrid det. NF_hR_lT.glb
4 yr ν
4 yr ν̄

variable variable Hybrid 50 kt

Standard Neutrino Factory – NFstandard.glb

A standard neutrino factory scenario can be simulated with the file NFstandard.glb. The
basic version was used within [7] (NuFact-II scenario, but some changes in normalization

B.4 Neutrino Factory Experiments 141

errors). This reference should be cited if the file NFstandard.glb is used for a scien-
tific publication or a talk. For calculations that involve NFstandard.glb, the following
additional files are required:

• XCC.dat (charged current cross sections)

• XNC.dat (neutral current cross sections)

The neutrino beam is produced by the decay of muons stored in a storage ring at a parent
energy of Eµ = 50 GeV. A number of 1.06 · 1021 useful muon decays per year is assumed
in each polarity (corresponding to 5.3 · 1020 useful muon decays per year and polarity for
simultaneous operation with both polarities) and 4 years ν-running and 4 years ν̄-running
is assumed. The fiducial mass of the MID detector is taken to be mdet = 50 kt at a baseline
of L = 3000 km. The energy resolution is σe = 15% · E. The following rules are defined
within NFstandard.glb:

Disappearance – µ+-stored σnorm σcal

Signal 0.35 ⊗ (ν̄µ → ν̄µ)CC 0.025 10−4

Background 1.0 · 10−5 ⊗ (ν̄µ → ν̄x)NC 0.2 10−4

Appearance – µ+-stored
Signal 0.45 ⊗ (νe → νµ)CC 0.025 10−4

Background 5.0 · 10−6 ⊗ (ν̄µ → ν̄x)NC 5.0 · 10−6 ⊗ (ν̄µ → ν̄µ)CC 0.2 10−4

Disappearance – µ−-stored
Signal 0.45 ⊗ (νµ → νµ)CC 0.025 10−4

Background 1.0 · 10−5 ⊗ (νµ → νx)NC 0.2 10−4

Appearance – µ−-stored
Signal 0.35 ⊗ (ν̄e → ν̄µ)CC 0.025 10−4

Background 5.0 · 10−6 ⊗ (νµ → νx)NC 5.0 · 10−6 ⊗ (νµ → νµ)CC 0.2 10−4

Variable Eµ Neutrino Factory – NFvar.glb

A variable neutrino factory scenario can be simulated with the file NFvar.glb. The basic
version was used within [17] and follows the neutrino factory scenarios from [7]. These
references should be cited if the file NFvar.glb is used for a scientific publication or a talk.
For calculations that involve NFvar.glb, the following additional files are required:

• XCC.dat (charged current cross sections)

• XNC.dat (neutral current cross sections)

and the values of the following AEDL-Variables have to be set:

142 CHAPTER B. Catalogue of AEDL-Files

• emax (parent energy of the stored muons [km])

• BASELINE (experiment baseline [GeV])

The neutrino beam is produced by the decay of muons stored in a storage ring at a parent
energy of Eµ = emax. The parent energy of the muons can be appropriately set in the range
10 GeV . Eµ . 80 GeV. The baseline of the scenario is L = BASELINE and has to be cho-
sen within the interval 1 km . L . 2 · REARTH. Besides these settings the other attributes
of NFvar.glb are similar to the ones from NFstandard.glb. Only the treatment of the
disappearance channels is different. In the disappearance channels of NFstandard.glb,
the charge identification is used to reduce the background from the appearance neutri-
nos. In NFvar.glb, however, a threshold similar to the MINOS experiment [28] is applied
and the appearance and disappearance rates are assumed to be indistinguishable for the
disappearance channel. The following rules are defined within NFvar.glb:

Disappearance – µ+-stored σnorm σcal

Signal 0.9 ⊗ (ν̄µ → ν̄µ)CC 0.9 ⊗ (νe → νµ)CC 0.025 10−4

Background 1.0 · 10−5 ⊗ (ν̄µ → ν̄x)NC 0.2 10−4

Appearance – µ+-stored
Signal 0.45 ⊗ (νe → νµ)CC 0.025 10−4

Background 5.0 · 10−6 ⊗ (ν̄µ → ν̄x)NC 5.0 · 10−6 ⊗ (ν̄µ → ν̄µ)CC 0.2 10−4

Disappearance – µ−-stored
Signal 0.9 ⊗ (νµ → νµ)CC 0.9 ⊗ (ν̄e → ν̄µ)CC 0.025 10−4

Background 1.0 · 10−5 ⊗ (νµ → νx)NC 0.2 10−4

Appearance – µ−-stored
Signal 0.35 ⊗ (ν̄e → ν̄µ)CC 0.025 10−4

Background 5.0 · 10−6 ⊗ (νµ → νx)NC 5.0 · 10−6 ⊗ (νµ → νµ)CC 0.2 10−4

Variable Feutrino Factory with Silver Channel –
NF_GoldSilver.glb

A variable neutrino factory scenario that includes the golden and silver appearance chan-
nels can be simulated with the file NF_GoldSilver.glb. The basic version was used
within [17] and the golden channel follows the neutrino factory scenarios from [7] and
the description of the silver channel follows [18]. These references should be cited if the
file NFvar_GoldSilver.glb is used for a scientific publication or a talk. For calculations
that involve NFvar_GoldSilver.glb, the following additional files are required:

• XCC.dat (charged current cross sections)

B.4 Neutrino Factory Experiments 143

• XNC.dat (neutral current cross sections)

and the values of the following AEDL-Variables have to be set:

• emax (parent energy of the stored muons [GeV])

• BASELINE (experiment baseline [km])

The beam and golden channel attributes are similar to NFvar.glb. The parent energy
of the muons can be appropriately set in the range 10 GeV . Eµ . 80 GeV (technically it
is possible to arrange emax for Eµ = 5 GeV). The baseline is set by the AEDL-Variable
BASELINE and has to be chosen within the interval 1 km . L . 2 · REARTH. For the silver
channel, an additional ECC detector with a fiducial mass mECC = 5 kt is assumed to be
located at the same baseline as the MID detector. The energy resolution of the silver
channel is set to σe = 20% · E. The following additional rule compared to NFvar.glb is
introduced in NF_GoldSilver.glb:

τ -Appearance – µ+-stored σnorm σcal

Signal 0.096 ⊗ (νe → ντ)CC 0.15 10−4

Background 3.1 · 10−8 ⊗ (νe → νe)CC 2.0 · 10−8 ⊗ (νe → νµ)CC 0.2 10−4

3.7 · 10−6 ⊗ (ν̄µ → ν̄µ)CC 1.0 · 10−3 ⊗ (ν̄µ → ν̄τ)CC 0.2 10−4

7.0 · 10−7 ⊗ (ν̄µ → ν̄x)NC 7.0 · 10−7 ⊗ (νe → νx)NC 0.2 10−4

High Resolution/Low Threshold Neutrino Factory –
NF_hR_lT.glb

A variable neutrino factory hybrid detector scenario can be simulated with the file
NF_hR_lT.glb. The basic version was used within [17] and follows the neutrino factory
scenarios from [7]. These references should be cited if the file NF_hR_lT.glb is used for
a scientific publication or a talk. For calculations that involve NF_hR_lT.glb, the same
additional files as for NFvar.glb are required and the AEDL-Variables emax and BASELINE

have to be set within the same constraints as for NFvar.glb. NF_hR_lT.glb implements a
lower threshold (∼ 1 GeV) at a higher energy resolution σe = 15% · E + 0.085 MeV, where
the constant term represents the effects from Fermi Motion. The background rejection is
energy dependent according to 10−3/E2, and matches NFvar.glb at higher energies. The
following rules are defined within NF_hR_lT.glb:

Disappearance – µ+-stored σnorm σcal

Signal 0.9 ⊗ (ν̄µ → ν̄µ)CC 0.9 ⊗ (νe → νµ)CC 0.025 10−4

Background 1.0 ⊗ (ν̄µ → ν̄x)NC 0.2 10−4

144 CHAPTER B. Catalogue of AEDL-Files

Appearance – µ+-stored
Signal 0.5 ⊗ (νe → νµ)CC 0.025 10−4

Background 1.0 ⊗ (ν̄µ → ν̄x)NC (energy dep. rejection) 0.2 10−4

1.0 ⊗ (ν̄µ → ν̄µ)CC (energy dep. rejection) 0.2 10−4

Disappearance – µ−-stored
Signal 0.9 ⊗ (νµ → νµ)CC 0.9 ⊗ (ν̄e → ν̄µ)CC 0.025 10−4

Background 1.0 · 10−5 ⊗ (νµ → νx)NC 0.2 10−4

Appearance – µ−-stored
Signal 0.5 ⊗ (ν̄e → ν̄µ)CC 0.025 10−4

Background 1.0 ⊗ (νµ → νx)NC (energy dep. rejection) 0.2 10−4

1.0 ⊗ (νµ → νµ)CC (energy dep. rejection) 0.2 10−4

145

Appendix C

Flux normalization in GLoBES∗

A common issue with GLoBES is confusion about the proper units for the input flux files for
use in AEDL experiment descriptions. Source of the confusion is an undocumented factor
5.2 with which the fluxes are multiplied in GLoBES versions older than 3.0 (see below). In
Version 3.0 and higher, the alternative flux environment nuflux is provided, which does
not contain this factor. The following material is based on the old environment flux. For
the use of nuflux, replace the factor 5.2 by unity.

Historical problem

One problem for the design of AEDL was initially that meaningful units for flux data
strongly depend on the given type of experiment, but also on relatively arbitrary decisions.
For accelerator beams based on pion decay, one frequently defines the beam luminosity in
protons on target (pot) since this number has a one-to-one correspondence with the number
of neutrinos produced. Another sensible unit could be megawatts on target (MW), again
this number is directly correlated with the number of neutrinos and moreover there is a
unique relation to pot for a given accelerator. Of course, what matters is the integrated
luminosity. In some cases the neutrino flux is given per 107 s. However, most experiments
will run for several years, hence also this number has to enter somewhere. For neutrino
factories the proper number is useful muon decays per unit time, and for reactor experi-
ments it is the thermal power of the reactor asf. This demonstrates that it is reasonable
to keep the flux definition flexible.

Implementation in GLoBES

In understanding how one still can figure out what the correct units are for each case, it is
a good starting point to look at what GLoBES does with the input files. The cross section
in the file is given as differential cross section divided by energy x = σ/E, and the flux
file gives f . The differential number of events per GeV n as computed in GLoBES without

146 CHAPTER C. Flux normalization in GLoBES∗

oscillation and efficiencies is given by

n = 5.2× x× E × f ×
@norm×@power×@stored muons×@time× $target mass× ($baseline)−2

Note that 5.2 is a undocumented fudge factor!
It is the sole responsibility of the author of the AEDL file and its supporting files, to

ensure that the result makes sense. In principle, it is possible to divide, for example, @time
by π and fix that by redefining the flux file by multiplying it with π. Modifications like
that have happened in the past and still happen, and many of them are not properly
commented.

Writing AEDL files

The task is to choose the value of @norm such that all the variables in the AEDL file have
the proper units, e.g., @time has proper unit years.

GLoBES assumes that the cross section x is given in 10−38 cm2 and that all fluxes are
given at a distance of 1 km. In addition, it assumes that the number of target nuclei τ
(or protons or whatever applies to the given cross section) per unit target mass mu (which
usually is kt) are properly accounted for.1 Assuming that in the flux file the data is given
as number of neutrinos per unit area A and energy bin of width ∆E at a distance L from
the source, one obtains

@norm =
1

5.2

(
GeV

∆E

)(
cm2

A

)(
L

km

)2(
τ

mu

)
× 10−38 ×

(
Lu
L

)
(C.1)

where L absorbs all factors in the flux file related to the integrated luminosity, and Lu
is the unit chosen for it. The concept of integrated luminosity is nicely described in the
GLoBES manual in Sec. 11.1. A little example illustrates this concept: The flux is given
for 1021 pot y−1 of 10 GeV protons, thus a good choice for the units Lu is MW y−1, which
means that L/Lu is given by (assuming a 107 s year)

L
Lu

=
10 GeV 1021 pot y

107 s
× (MW y−1)−1 = 0.16 . . . (C.2)

Moving from flux to nuflux

In order to change the older flux environment to the new nuflux (GLoBES 3.0 and higher),
replace all user-defined fluxes, such as

flux(#user)<

@flux_file = "user_file_1.dat"

1Note that the cross sections which are delivered with GLoBES always are per nucleon.

CHAPTER C. Flux normalization in GLoBES∗ 147

@time = 2.0

@power = 4.0

@norm = 1e+8

>

by

FF=5.1989

nuflux(#user)<

@flux_file = "user_file_1.dat"

@time = 2.0

@power = 4.0

@norm = FF*1e+8

>

This replacement is not necessary for neutrino factory built-in fluxes, and built-in beta
beam fluxes were not supported by earlier versions of GLoBES.

148 CHAPTER C. Flux normalization in GLoBES∗

149

Appendix D

The GNU General Public License

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

150 CHAPTER D. The GNU General Public License

Terms and Conditions For Copying, Distribution
and Modification

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee
is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other recipients of the Program a copy of this
License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

CHAPTER D. The GNU General Public License 151

In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient au-
tomatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipi-
ents’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or

152 CHAPTER D. The GNU General Public License

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and “any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution con-
ditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make ex-
ceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no warranty for the
program, to the extent permitted by applicable law. Except when otherwise stated
in writing the copyright holders and/or other parties provide the program “as
is” without warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with
you. Should the program prove defective, you assume the cost of all necessary
servicing, repair or correction.

CHAPTER D. The GNU General Public License 153

12. In no event unless required by applicable law or agreed to in writing will any
copyright holder, or any other party who may modify and/or redistribute the
program as permitted above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to
use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program
to operate with any other programs), even if such holder or other party has been
advised of the possibility of such damages.

End of Terms and Conditions

154 CHAPTER D. The GNU General Public License

155

Appendix E

GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
”free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein.
The ”Document”, below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as ”you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall

156 CHAPTER E. GNU Free Documentation License

subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document straightfor-
wardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo in-
put format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in formats
which do not have any title page as such, ”Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as ”Acknowledgements”, ”Dedications”,
”Endorsements”, or ”History”.) To ”Preserve the Title” of such a section when you modify the
Document means that it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

CHAPTER E. GNU Free Documentation License 157

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

158 CHAPTER E. GNU Free Documentation License

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled ”History” in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the ”History” section. You may omit a network location for
a work that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name
of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

CHAPTER E. GNU Free Documentation License 159

In the combination, you must combine any sections Entitled ”History” in the various original docu-
ments, forming one section Entitled ”History”; likewise combine any sections Entitled ”Acknowledgements”,
and any sections Entitled ”Dedications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy that
is included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an ”aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may include a translation of this License, and all
the license notices in the Document, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License or a notice or disclaimer,
the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

160 CHAPTER E. GNU Free Documentation License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

161

Bibliography

[1] P. Huber, M. Lindner, and W. Winter, Simulation of long-baseline neutrino os-
cillation experiments with GLoBES, Comput. Phys. Commun. 167 (2005), 195,
hep-ph/0407333.

[2] P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter, New features in the simu-
lation of neutrino oscillation experiments with GLoBES 3.0, Comput. Phys. Commun.
177 (2007), 432–438, hep-ph/0701187.

[3] A. M. Dziewonski and D. L. Anderson, Preliminary reference earth model, Phys. Earth
Planet. Interiors 25 (1981), 297–356.

[4] F. D. Stacey, Physics of the earth, 2nd ed., Wiley, 1977.

[5] DUNE, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Un-
derground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2: The
Physics Program for DUNE at LBNF, (2015), 1512.06148.

[6] Y. Itow et al., The jhf-kamioka neutrino project, Nucl. Phys. Proc. Suppl. 111 (2001),
146–151, hep-ex/0106019.

[7] P. Huber, M. Lindner, and W. Winter, Superbeams versus neutrino factories, Nucl.
Phys. B645 (2002), 3–48, hep-ph/0204352.

[8] NOvA, I. Ambats et al., Nova proposal to build a 30-kiloton off-axis detector to study
neutrino oscillations in the fermilab numi beamline, (2004), hep-ex/0503053.

[9] NOvA, T. Yang and S. Woijcicki, Study of physics sensitivity of νµ disappearance in
a totally active version of nova detector, (2004), Off-Axis-Note-SIM-30.

[10] J. E. Campagne, M. Maltoni, M. Mezzetto, and T. Schwetz, Physics potential of the
cern-memphys neutrino oscillation project, (2006), hep-ph/0603172.

[11] J. E. Campagne and A. Cazes, The theta(13) and delta(cp) sensitivities of the spl-
frejus project revisited, Eur. Phys. J. C45 (2006), 643–657, hep-ex/0411062.

[12] M. Mezzetto, Physics potential of the spl super beam, J. Phys. G29 (2003), 1781–1784,
hep-ex/0302005.

162 BIBLIOGRAPHY

[13] P. Huber, M. Lindner, T. Schwetz, and W. Winter, Reactor neutrino experiments
compared to superbeams, Nucl. Phys. B665 (2003), 487–519, hep-ph/0303232.

[14] P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter, From double chooz to
triple chooz: Neutrino physics at the chooz reactor complex, JHEP 05 (2006), 072,
hep-ph/0601266.

[15] J. Burguet-Castell, D. Casper, E. Couce, J. J. Gomez-Cadenas, and P. Hernandez, Op-
timal beta-beam at the cern-sps, Nucl. Phys. B725 (2005), 306–326, hep-ph/0503021.

[16] P. Huber, M. Lindner, M. Rolinec, and W. Winter, Physics and optimization
of beta-beams: From low to very high gamma, Phys. Rev. D73 (2006), 053002,
hep-ph/0506237.

[17] P. Huber, M. Lindner, M. Rolinec, and W. Winter, Optimization of a neutrino factory
oscillation experiment, Phys. Rev. D74 (2006), 073003, hep-ph/0606119.

[18] D. Autiero et al., The synergy of the golden and silver channels at the neutrino factory,
Eur. Phys. J. C33 (2004), 243–260, hep-ph/0305185.

[19] R. P. Brent, Algorithms for minimization without derivatives, Prentice-Hall, 1973.

[20] M. Blennow, T. Ohlsson, and W. Winter, Damping signatures in future neutrino
oscillation experiments, JHEP 06 (2005), 049, hep-ph/0502147.

[21] T. Ohlsson and H. Snellman, Neutrino oscillations with three flavors in matter:
Applications to neutrinos traversing the earth, Phys. Lett. B474 (2000), 153–162,
hep-ph/9912295, Erratum ibidem B480, 419(E) (2000).

[22] J. Kopp, Efficient numerical diagonalization of hermitian 3x3 matrices, (2006),
physics/0610206.

[23] T. Ohlsson and W. Winter, The role of matter density uncertainties in the anal-
ysis of future neutrino factory experiments, Phys. Rev. D68 (2003), 073007,
hep-ph/0307178.

[24] K. Kiers, S. Nussinov, and N. Weiss, Coherence effects in neutrino oscillations, Phys.
Rev. D53 (1996), 537–547, hep-ph/9506271.

[25] C. Giunti, Coherence and wave packets in neutrino oscillations, Found. Phys. Lett.
17 (2004), 103–124, hep-ph/0302026.

[26] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo, Getting the most from
the statistical analysis of solar neutrino oscillations, Phys. Rev. D66 (2002), 053010,
hep-ph/0206162.

BIBLIOGRAPHY 163

[27] M. Ishitsuka, T. Kajita, H. Minakata, and H. Nunokawa, Resolving neutrino mass
hierarchy and cp degeneracy by two identical detectors with different baselines, Phys.
Rev. D72 (2005), 033003, hep-ph/0504026.

[28] MINOS, E. Ables et al., P-875: A long baseline neutrino oscillation experiment at
fermilab, FERMILAB-PROPOSAL-0875.

164 BIBLIOGRAPHY

165

Appendix F

Indices

166 CHAPTER F. Indices

API functions

_chi_function, 25
_exp, 16
_experiment_list, 16
_get_oscillation_parameters, 68
_get_oscillation_parameters_function,

67
_num_of_exps, 4, 16
_params, 4, 17, 18
_probability_matrix, 68
_probability_matrix_function, 68
_projection, 17, 40
_set_oscillation_parameters, 68
_set_oscillation_parameters_function,

67

AllocParams, 19
AllocProjection, 40
AverageDensityProfile, 62

ChiAll, 4, 45, 46
ChiDelta, 4, 37
ChiDm21, 4, 39
ChiDm31, 4, 39
ChiNP, 4, 35, 38, 40, 41
ChiSys, 4, 23, 24
ChiTheta13, 4, 37
ChiTheta13Delta, 4, 39
ChiTheta23, 4, 39
ClearAEDLVariables, 64
ClearExperimentList, 16
ClearParamNames, 73
ConstantDensityProbability, 51
CopyParams, 19
CopyProjection, 40

DefineAEDLList, 64
DefineAEDLVariable, 63
DefineChiFunction, 25, 58, 110
DefineOscEngine, 68, 112
DefineParams, VI, 19
DefineProjection, VI, 40

FilteredConstantDensityProbability,
52

FindParamByName, 73
Flux, 56
FreeProjection, 40

GetAEDLVariable, 64
GetBackgroundPtr, 54
GetBaselineInExperiment, 61
GetBGErrors, 58
GetBGFitRatePtr, 28, 56
GetBGRatePtr, 56
GetBinCentersListPtr, 53
GetBinSizeListPtr, 53
GetCentralValues, 34
GetChannelFitRatePtr, 56
GetChannelInRule, 53
GetChannelRatePtr, 55
GetChiFunction, 27, 58
GetChiFunctionPtr, 27
GetChiFunctionPtrInExperiment, 28
GetCitationForExperiment, 52
GetCoefficientInRule, 53
GetDensityParams, 20
GetDensityProjectionFlag, 40
GetEfficiencyPtr, 53
GetEminEmax, 28, 52
GetEnergyWindow, 28, 52
GetEnergyWindowBins, 28, 52
GetFilenameOfExperiment, 52
GetFilter, VI
GetFilterInExperiment, 65
GetFilterState, VI
GetFilterStateInExperiment, 64
GetInputErrors, 34
GetIteration, 20
GetLengthOfRule, 53
GetNumberOfBins, 28, 52
GetNumberOfChannels, 53
GetNumberOfFluxes, 56

API FUNCTIONS 167

GetNumberOfRules, 53
GetNumberOfSamplingPoints, 53
GetNumOfOscParams, 68, 71
GetOscillationParameters, 21
GetOscParamByName, 73
GetOscParams, 20, 71
GetParamName, 73
GetProfileDataInExperiment, 62
GetProfileTypeInExperiment, 60
GetProjection, 41
GetProjectionFlag, 40, 71
GetRuleRatePtr, 28, 55
GetRunningTime, 18
GetSamplingPointsListPtr, 53
GetSamplingStepsizeListPtr, 53
GetSignalErrors, 58
GetSignalFitRatePtr, 28, 56
GetSignalRatePtr, 55
GetSourcePower, 18
GetSysErrorsListPtr, 60
GetSysOnOffState, 57
GetSysStartingValuesListPtr, 30
GetTargetMass, 18

Init, 13
InitExperiment, 15, 16, 63, 88

LoadProfileData, 61

NameToValue, 54, 87

PrintParams, 19, 38
PrintProjection, 40
ProfileProbability, 51

RegisterPriorFunction, 43
RegisterProbabilityEngine, 68

SelectMinimizer, 75
SetBaselineInExperiment, 61
SetBGErrors, 58
SetCentralValues, 4, 34, 38, 39, 43
SetChiFunction, 27, 58
SetCoefficientInRule, 60
SetDensityParams, VI, 20

SetDensityProjectionFlag, VI, 40
SetEnergyWindow, 60
SetFilter, VI
SetFilterInExperiment, 65
SetFilterState, VI
SetFilterStateInExperiment, 64
SetInputErrors, 4, 34, 38, 39, 43
SetIteration, 20
SetNewRates, 98
SetOscillationParameters, 21
SetOscParamByName, 73
SetOscParams, 20, 71
SetParamName, 73
SetParamNames, 73
SetProfileDataInExperiment, 62
SetProjection, 4, 41
SetProjectionFlag, 40, 71
SetRates, 21, 39, 98
SetRunningTime, 18
SetSignalErrors, 58
SetSourcePower, 17
SetSysErrorsList, 60
SetSysStartingValuesList, 27, 30
SetTargetMass, 18
SetVerbosityLevel, 22
ShiftEnergyScale, 28
ShowChannelRates, 55
ShowRuleRates, 55
StaceyProfile, 62
SwitchSystematics, 25, 57

TestReleaseVersion, 22
TotalRuleRate, 54

VacuumProbability, 51
ValueToName, 54, 87
VersionOfExperiment, 22

XSection, 56

168 CHAPTER F. Indices

API constants & macros

GLB_ALL, 4, 16, 23, 57, 58

GLB_BG, 53-55, 60

GLB_DELTA_CP, 20

GLB_DM_21, 20

GLB_DM_31, 20

GLB_FIXED, 40, 41

GLB_FREE, 40, 41

GLB_MIN_DEFAULT, 75

GLB_MIN_NESTED_POWELL, 75

GLB_MIN_POWELL, 75

GLB_OFF, 57, 64

GLB_ON, 57, 64

GLB_POST, 55

GLB_PRE, 55

GLB_SIG, 53-55, 60

GLB_THETA_12, 20

GLB_THETA_13, 20

GLB_THETA_23, 20

GLB_WO_BG, 54, 55

GLB_WO_COEFF, 54, 55

GLB_WO_EFF, 54, 55

GLB_W_BG, 54, 55

GLB_W_COEFF, 54, 55

GLB_W_EFF, 54, 55

GLB_ALL, 16

AEDL REFERENCE 169

AEDL reference

acos, 88
asin, 88
atan, 88

$baseline, 94
BB_100.glb, 133
BB_350.glb, 134
BBvar_TASD.glb, 137
BBvar_WC.glb, 136
bincenter, 89
$bins, 101
$binsize, 101

channel, 96–98
NOSC_, 98
@post_smearing_background, 102
@post_smearing_efficiencies, 102
@pre_smearing_background, 102
@pre_smearing_efficiencies, 102

$citation, 86
copy, 89
cos, 88
cross, 95

@cross_file, 95, 96

D-Chooz_far.glb, 132
D-Chooz_near.glb, 132
$densitysteps, 94
$densitytab, 94
#DETECTOR#, 87

echo, 89
echon, 89
$emax, 101
$emin, 101
energy, 99–106

@energy, 105
#inverse_beta, 104
@sigma_function, 103
#standard, 103
@type, 104

@type, 103
exp, 88

$filter_state, 104
$filter_value, 104

include, 87
interpolation, 89

$lengthtab, 94
line, 89
log, 88
log10, 88

#NEXT#, 87
NF_GoldSilver.glb, 140
NF_hR_lT.glb, 141
NFstandard.glb, 138
NFvar.glb, 139
NOvA.glb, 129
nuflux, 92

@builtin, 93
@end_point, 93
@flux_file, 93, 94
@gamma, 93
@norm, 93
@parent_energy, 93
@power, 93
@stored_ions, 93
@stored_muons, 93
@time, 92

$oscillation_engine, 69, 112

$profiletype, 94

Reactor1.glb, 131
Reactor2.glb, 132
rule, 106–111

@background, 107
@backgrounderror, 109
@data, 112

170 CHAPTER F. Indices

@data_flag, 112
@energy_window, 108
@signal, 107
@signalerror, 109
@sys_off_errors, 110
@sys_off_function, 110
@sys_on_errors, 110
@sys_on_function, 110
@sys_on_multiex_errors_sig, 112
@sys_on_multiex_errors_bg, 112

$sampling_max, 100
$sampling_min, 100
$sampling_points, 100
$sampling_stepsize, 100
samplingbincenter, 89
sin, 88
SPL.glb, 130
sqrt, 88
sys, 111–112

@energy_list, 112
@error, 111
@error_list, 112
@systype, 111

T2HK.glb, 129
T2K.glb, 127
tan, 88
$target_mass, 92

$version, 86

INDEX 171

Index

Advanced tricks, 35, 47
AEDL, 75

external parameters, 63, 88
names, 54

Aliasing, 104

Background
centers, 58
errors, 58

Bar plots, 59
Baseline, 94

change, 60
Bin, 98
Build process, see Compilation

C-Code, 14
Channel, 81, 96
Compilation

of application programs, 13
Condor, 122
Correlation

and ∆χ2, 31
multi-parameter, 31, 36
two-parameter, 24, 36

Cross section, 56, 95
file, 96

comments in, 96

Decoherence, 72
Degeneracies, 45–49

and ∆χ2, 45
multiple solutions, 45
sgn(∆m2

31)-degeneracy, 46
Detector mass, 17

Energy
resolution, 97, 99–106
resolution function, 103
window, 108

Environment variables
GLB_CENTRAL_VALUES, 114

GLB_PATH, 16
Event rates, 54, 55
Examples, 13
Experiment

delete, 16
list, 16

clear, 16
number of, 16

Experiment files (table), 15
Experiment initialization, 16
Experiment parameters, 57
External information, 33

central values, 32, 34
input errors, 32, 34
precision, 34
priors, 32, 35

External input, see External information

File names, 88
Filter, 104

functions, 64
Fitting of data, 112
Flux, 56

file, 94
comments in, 94

GLB_ALL, 16
GLB_CENTRAL_VALUES, 114
glb-files, 15
glb-files

installation, 13
GLB_PATH, 16
globes, 113

channel rates, 115
errors, 114
oscillation parameters, 113
output, 115
rule rates, 115
spectral rates, 114
total rates, 114

172 CHAPTER F. Indices

variable substitution, 116
verbosity, 114
warnings, 114

GLoBES tour, 3

Initialization, 13
GLoBES library, 13
experiments, 16
libglobes, 13

Installation, 13, 119–126
Integrated luminosity, 17

libglobes, 13, 113
Low-level information, 51

Mass hierarchy, 46, 47
Matter density

change profile, 60
of the earth, 94
profile, 19
scaling factor, 19, 33, 38

Minimization
all-parameter, 45

Minimizer, 31, 35
iterations, 20
priors, 35

Non-standard physics, 67
Normalization of fluxes, 143
Nuisance parameter, 23

Oscillation
parameter vectors, 18
probabilities, 51
switching off, 98

Parameter vector handling, 20
Path resolution, 16
PREM, see Matter density
Program, 14
Projection

θ13-δCP-plane, 39
definition, 41
axis, 35
hyperplane, 39

of manifold, 31, 36
type, 40

Pull method, 23

Reference rate vector, 21
Referencing

cross section data, 96
data in GLoBES, III
flux data, 94
matter profile data, 94

Rule, 81, 106
Running time, 17

Set oscillation parameters, 21
Signal

errors, 58
Simulated data, 21
Smear matrix, 97
Source power, 17
Standard functions (table), 4
Systematics, 23, 57

χ2, 23
builtin functions, 23
correlated, 111–112
Example, user-defined, 26
on/off, 57, 59
user-defined, 25

Systematics function, 109, 110

True values, 21

Units in GLoBES (table), 17
User-defined priors, 43
User-defined systematics, 110

Version 3.0, V
Version 3.2.18, V
Version control, 21

	How to use this manual
	I User's manual
	A GLoBES tour
	GLoBES basics
	Initialization of GLoBES
	Units in GLoBES and the integrated luminosity
	Handling oscillation parameter vectors
	Computing the simulated data
	Version control and debugging

	Calculating 2 with systematics only
	Built-in systematics
	User-defined systematics calculation*

	Calculating 2-projections: how one can include correlations
	Introduction
	The treatment of external input
	Projection onto the sin2 2 13-axis or CP-axis
	Projection onto any hyperplane*
	User-defined priors*

	Locating degenerate solutions
	Minimization over all oscillation parameters
	Advanced tricks for degeneracy localization*

	Obtaining low-level information
	Oscillation probabilities
	Information from AEDL files*
	Event rates*
	Fluxes and cross sections*

	Changing experiment parameters at running time
	Systematics
	Baseline and matter density profile*
	External parameters in AEDL files*
	Algorithm parameters: Filter functions*

	Simulating non-standard physics*
	Modification of GLoBES
	Using non-standard physics in the application software
	Defining oscillation parameter names at running times

	Experimental features*

	II The Abstract Experiment Definition Language – AEDL
	Getting started
	General concept of the experiment simulation
	A simple example for AEDL
	Introduction to the syntax of AEDL
	More advanced AEDL features*

	Experiment definition with AEDL
	Source properties and integrated luminosity
	Baseline and matter density profile
	Cross sections
	Oscillation channels
	Energy resolution function
	Introduction and principles
	Bin-based automatic energy smearing
	Low-pass filter*
	Manual energy smearing*

	Rules and the treatment of systematics
	Systematics correlated across experiments and rules*
	Fitting actual experimental data*

	Testing & debugging of AEDL files
	Basic usage of the globes binary
	Testing AEDL files

	Acknowledgments
	GLoBES installation
	Prerequisites for installation of GLoBES
	Installation Instructions

	Catalogue of AEDL-Files
	Superbeam Experiments
	Reactor Experiments
	Beta Beam Experiments
	Neutrino Factory Experiments

	Flux normalization in GLoBES*
	The GNU General Public License
	GNU Free Documentation License
	Bibliography
	Indices
	API functions
	API constants & macros
	AEDL reference
	Index

