Exercises to "Standard Model of Particle Physics II"

Winter 2016/17

Sheet 9

Problem 17: Z-decay and Majorana neutrinos [10 Points]

The Lagrangian for the coupling of a fermion pair f with the Z-boson is

$$
\mathscr{L}=\frac{g}{2 \cos \theta_{W}} \bar{f} \gamma^{\mu}\left(v_{f}-a_{f} \gamma_{5}\right) f Z_{\mu}
$$

For neutrinos we have that $v_{\nu}=a_{\nu}=\frac{1}{2}$.
a) Calculate the decay width for $Z \rightarrow \bar{\nu} \nu$ in the Standard Model, but keeping a possible neutrino mass in the expression.
b) Neutrinos could be Majorana particles, which obey the relation $\nu^{c}=\nu$. The superscript c denotes charge conjugation,

$$
\nu^{c}=C(\bar{\nu})^{T},
$$

with $C=i \gamma_{2} \gamma_{0}$ in the Dirac basis.
Show the following properties

$$
\begin{gathered}
-C=C^{T}=C^{-1}=-C^{*}=C^{\dagger}, \\
C^{-1} \gamma_{\mu} C=-\gamma_{\mu}^{T}, \quad C^{-1} \gamma_{5} C=\gamma_{5}^{T}, \\
\overline{\psi^{c}}=-\psi^{T} C^{-1}, \quad\left(\psi_{L}\right)^{c}=\left(\psi^{c}\right)_{R},
\end{gathered}
$$

where $\left(\psi^{c}\right)_{L}=P_{L}\left(\psi^{c}\right) \equiv \psi_{L}^{c}$ and so on.
c) Show that for Majorana neutrinos the vector current $\bar{\nu} \gamma_{\mu} \nu$ vanishes. What happens with $\bar{\nu} \gamma_{5} \nu, \bar{\nu} \gamma_{\mu} \gamma_{5} \nu$ and $\bar{\nu}\left[\gamma_{\mu}, \gamma_{\nu}\right] \nu$?
d) Using the previous result calculate the decay width $Z \rightarrow \nu \nu$ for Majorana neutrinos and compare with a).

Problem 18: Seesaw type-I [10 Points]

The Higgs mechanism generates Dirac masses for the active neutrinos, when right-handed neutrinos are introduced. The following term appears in the Lagrangian after the Higgs acquires a VEV:

$$
\mathscr{L}_{\text {Dirac }}=-\bar{\nu}_{L} M_{D} N_{R}+\text { h.c. },
$$

where $\nu_{L}=\left(\nu_{L}^{1}, \nu_{L}^{2}, \nu_{L}^{3}\right)^{T}$ is the column vector of the active neutrinos and N_{R} the corresponding vector for the 3 right-handed neutrinos. The matrix M_{D} is most generally a complex 3×3 matrix. Furthermore, the right-handed neutrinos, being SM-singlets, can have a Majorana mass term in the Lagrangian:

$$
\mathscr{L}_{\text {Majorana }}=-\frac{1}{2} \overline{\left(N_{R}\right)^{\mathrm{c}}} M_{R} N_{R}+\text { h.c. }
$$

where M_{R} is a symmetric 3×3 matrix.
a) Prove the identity $\overline{\nu_{L}} M_{D} N_{R}=\overline{\left(N_{R}\right)^{\mathrm{c}}} M_{D}^{T}\left(\nu_{L}\right)^{\mathrm{c}}$.
b) Show that it is possible to rewrite the neutrino mass matrix in the flavour basis in the following way

$$
\mathscr{L}_{\text {mass }} \equiv \mathscr{L}_{\text {Dirac }}+\mathscr{L}_{\text {Majorana }}=-\frac{1}{2} \overline{\Psi^{\mathrm{c}}} M \Psi+\text { h.c. }
$$

with

$$
\Psi \equiv\binom{\left(\nu_{L}\right)^{\mathrm{c}}}{N_{R}} \quad \text { and } \quad M \equiv\left(\begin{array}{cc}
0 & M_{D} \\
M_{D}^{T} & M_{R}
\end{array}\right)
$$

c) A symmetric complex matrix, such as M, can be diagonalised via a unitary matrix U according to $U^{T} M U$. Suppose that the entries of M_{R} are much larger than the ones of $M_{D}\left(\left|M_{R i j}\right| \gg\left|M_{D i j}\right|\right)$. Using the unitary transformation $\Psi=U \chi$, block-diagonalise the mass matrix M keeping only terms of order ρ^{2} and less:

$$
U^{T} M U \simeq\left(\begin{array}{cc}
M_{1} & 0 \tag{1}\\
0 & M_{2}
\end{array}\right) \quad \text { with } \quad U=\left(\begin{array}{cc}
1-\frac{1}{2} \rho \rho^{\dagger} & \rho \\
-\rho^{\dagger} & 1-\frac{1}{2} \rho^{\dagger} \rho
\end{array}\right)
$$

and U unitary up to $\mathcal{O}\left(\rho^{4}\right)$. M_{1} and M_{2} are 3×3 symmetric block-matrices and ρ is assumed to be proportional to $M_{D} M_{R}^{-1}$.
Determine ρ, M_{1}, and M_{2} from Eq. (1) and verify that the expansion in small ρ is valid. What is the connection between the fields χ_{1}, χ_{2} and the original fields ν_{L}, N_{R} ? (hint: assume that M_{R} is invertible.)

Happy Holidays!

Tutor:

Moritz Platscher
e-mail: moritz.platscher@mpi-hd.mpg.de
Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html
Hand-in and discussion of sheet:
Wednesday, 14:15, Phil12, R106

