Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann	Sheet 9	14.12.16
---	---------	----------

Problem 17: Z-decay and Majorana neutrinos [10 Points]

The Lagrangian for the coupling of a fermion pair f with the Z-boson is

$$\mathscr{L} = \frac{g}{2\cos\theta_W}\bar{f}\gamma^\mu(v_f - a_f\gamma_5)fZ_\mu,$$

For neutrinos we have that $v_{\nu} = a_{\nu} = \frac{1}{2}$.

- a) Calculate the decay width for $Z \to \bar{\nu}\nu$ in the Standard Model, but keeping a possible neutrino mass in the expression.
- b) Neutrinos could be Majorana particles, which obey the relation $\nu^c = \nu$. The superscript c denotes charge conjugation,

$$\nu^c = C(\bar{\nu})^T,$$

with $C = i\gamma_2\gamma_0$ in the Dirac basis. Show the following properties

$$-C = C^{T} = C^{-1} = -C^{*} = C^{\dagger},$$

$$C^{-1}\gamma_{\mu}C = -\gamma_{\mu}^{T}, \quad C^{-1}\gamma_{5}C = \gamma_{5}^{T},$$

$$\overline{\psi^{c}} = -\psi^{T}C^{-1}, \quad (\psi_{L})^{c} = (\psi^{c})_{R},$$

where $(\psi^c)_L = P_L(\psi^c) \equiv \psi_L^c$ and so on.

- c) Show that for Majorana neutrinos the vector current $\bar{\nu}\gamma_{\mu}\nu$ vanishes. What happens with $\bar{\nu}\gamma_{5}\nu$, $\bar{\nu}\gamma_{\mu}\gamma_{5}\nu$ and $\bar{\nu}[\gamma_{\mu},\gamma_{\nu}]\nu$?
- d) Using the previous result calculate the decay width $Z \rightarrow \nu \nu$ for Majorana neutrinos and compare with a).

Problem 18: Seesaw type-I [10 Points]

The Higgs mechanism generates Dirac masses for the active neutrinos, when right-handed neutrinos are introduced. The following term appears in the Lagrangian after the Higgs acquires a VEV:

$$\mathscr{L}_{\text{Dirac}} = -\overline{\nu}_L M_D N_R + \text{h.c.},$$

where $\nu_L = (\nu_L^1, \nu_L^2, \nu_L^3)^T$ is the column vector of the active neutrinos and N_R the corresponding vector for the 3 right-handed neutrinos. The matrix M_D is most generally a complex 3×3 matrix. Furthermore, the right-handed neutrinos, being SM-singlets, can have a Majorana mass term in the Lagrangian:

$$\mathscr{L}_{\text{Majorana}} = -\frac{1}{2} \overline{(N_R)^c} M_R N_R + \text{h.c.},$$

where M_R is a symmetric 3×3 matrix.

a) Prove the identity $\overline{\nu_L} M_D N_R = \overline{(N_R)^c} M_D^T (\nu_L)^c$.

b) Show that it is possible to rewrite the neutrino mass matrix in the flavour basis in the following way

$$\mathscr{L}_{\text{mass}} \equiv \mathscr{L}_{\text{Dirac}} + \mathscr{L}_{\text{Majorana}} = -\frac{1}{2} \overline{\Psi^{c}} M \Psi + \text{h.c.},$$

with

$$\Psi \equiv \begin{pmatrix} (\nu_L)^c \\ N_R \end{pmatrix}$$
 and $M \equiv \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix}$.

c) A symmetric complex matrix, such as M, can be diagonalised via a unitary matrix U according to $U^T M U$. Suppose that the entries of M_R are much larger than the ones of M_D ($|M_{Rij}| \gg |M_{Dij}|$). Using the unitary transformation $\Psi = U\chi$, block-diagonalise the mass matrix M keeping only terms of order ρ^2 and less:

$$U^{T}MU \simeq \begin{pmatrix} M_{1} & 0\\ 0 & M_{2} \end{pmatrix} \quad \text{with} \quad U = \begin{pmatrix} 1 - \frac{1}{2}\rho\rho^{\dagger} & \rho\\ -\rho^{\dagger} & 1 - \frac{1}{2}\rho^{\dagger}\rho \end{pmatrix}, \quad (1)$$

and U unitary up to $\mathcal{O}(\rho^4)$. M_1 and M_2 are 3×3 symmetric block-matrices and ρ is assumed to be proportional to $M_D M_R^{-1}$.

Determine ρ , M_1 , and M_2 from Eq. (1) and verify that the expansion in small ρ is valid. What is the connection between the fields χ_1 , χ_2 and the original fields ν_L , N_R ? (hint: assume that M_R is invertible.)

Happy Holidays!

Tutor: Moritz Platscher e-mail: moritz.platscher@mpi-hd.mpg.de

Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in and discussion of sheet: Wednesday, 14:15, Phil12, R106