Exercises to "Standard Model of Particle Physics II"

Winter 2020/21

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann
Sheet 08 - January 13, 2020

Tutor: Cristina Benso e-mail: benso@mpi-hd.mpg.de
Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:
January 20, 2021 - via e-mail, before 14:00

Discussion of solutions:
January 20, 2021 - on zoom

Problem 16: Discrete symmetries [5 Points]

A CP transformation takes a left-handed neutrino and transforms it into a right-handed anti-neutrino. Consider the probability $P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)$ of a neutrino of flavor α to oscillate into a flavor β after time t of propagation.
a) How do the discrete symmetries CP, T, and CPT change the initial and final states of the process given above? That is, give

$$
\begin{gathered}
(\mathrm{CP})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{CP}), \\
(\mathrm{T})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{T}), \\
(\mathrm{CPT})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{CPT})
\end{gathered}
$$

in terms of other transition probabilities.
b) The CPT theorem states that every QFT described by a Lorentz invariant, local Lagrangian is invariant under CPT transformations. How could the above result be used to test this theorem in Nature? (Hint: Consider the case $\alpha=\beta$, i.e. the survival probability of (anti-) neutrinos.)

Problem 17: Neutrino Oscillations and CP violation [15 Points]

Neutrinos are produced and detected in weak interactions, but the neutrino mass matrix is diagonal in a different basis. The unitary matrix U rotates the flavor basis into the mass eigenbasis. Consider a neutrino of flavor α produced at time $t=0$,

$$
\begin{equation*}
|\nu(t=0)\rangle=\left|\nu_{\alpha}\right\rangle=U_{\alpha k}^{*}\left|\nu_{k}\right\rangle, \tag{1}
\end{equation*}
$$

as a superposition of mass eigenstates $\left|\nu_{j}\right\rangle$.
a) Using approximations i) and ii) below, and the fact that the time evolution of $\left|\nu_{k}\right\rangle$ is governed by the Schrödinger equation to derive the general expression for neutrino oscillations in vacuum,

$$
\begin{equation*}
P_{\alpha \beta} \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)=\delta_{\alpha \beta}-4 \sum_{k>j} \operatorname{Re}\left(\mathcal{I}_{\alpha \beta}^{k j}\right) \sin ^{2}\left(\frac{\Delta_{k j}}{2}\right)+2 \sum_{k>j} \operatorname{Im}\left(\mathcal{I}_{\alpha \beta}^{k j}\right) \sin \left(\Delta_{k j}\right), \tag{2}
\end{equation*}
$$

where $\mathcal{I}_{\alpha \beta}^{k j}=U_{\alpha k}^{*} U_{\beta k} U_{\beta j}^{*} U_{\alpha j}$ and $\Delta_{k j}=\frac{m_{k}^{2}-m_{j}^{2}}{2 E} L$. To arrive at this expression, you have to make the following assumptions:
i) Neutrinos are highly relativistic, such that the distance travelled is $L \simeq t(c=1)$ and $E_{i}=\sqrt{p_{i}^{2}+m_{i}^{2}} \simeq p_{i}\left(1+\frac{m_{i}^{2}}{2 p_{i}^{2}}\right)$.
ii) The central momentum of the neutrino beam is given by $p_{i} \simeq p \approx E$ for all i.
b) Derive the expression for the CP asymmetry $\mathcal{A}_{\alpha \beta} \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)-P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}, t\right)$. (Hint: How does the state (??) change under a CP transformation? Use this fact and Eq. (??)!)
c) Consider now the special case of two neutrino flavors, say e and μ, hence

$$
U=\left(\begin{array}{cc}
\cos \theta & e^{-i \delta} \sin \theta \\
-e^{-i \delta} \sin \theta & \cos \theta
\end{array}\right)
$$

Calculate the CP asymmetry for $e-\mu$ oscillations. What are the conditions for CP violation to occur?
d) Consider now the special case of three neutrino flavors whose mixing in general can be parametrised as

$$
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right),
$$

where $c_{a b} \equiv \cos \left(\theta_{a b}\right), s_{a b} \equiv \cos \left(\theta_{a b}\right), 0 \leq \theta_{a b} \leq \pi / 2$, and $0 \leq \delta \leq 2 \pi$. Calculate the CP asymmetry $\mathcal{A}_{e \mu}$ explicitly and show that it can only be non-vanishing if all of the following conditions are satisfied:
i) None of the mixing angles is 0 or $\pi / 2$.
ii) None of the mass-square differences (i.e. $\Delta_{a b}$) are zero.
iii) The phase δ is neither 0 nor π.

Problem 18: W - polarisation [5 Points]

(discretionary but very much recommended, especially for those who missed some points in the last sheets)

For a massive vector boson with four-momentum $k^{\mu}=(E,|k| \vec{n})$ propagation along the direction $\vec{n}=(\sin \theta, 0, \cos \theta)$, the polarisation vectors corresponding to the helicities $\lambda=0, \pm 1$ can be written as

$$
\begin{aligned}
\epsilon_{\lambda=0}^{\mu} & =m_{W}^{-1}(|k|, E \sin \theta, 0, E \cos \theta), \\
\epsilon_{\lambda= \pm 1}^{\mu} & =\frac{1}{\sqrt{2}}(0, \mp \cos \theta,-i, \pm \sin \theta) .
\end{aligned}
$$

Check that the completeness relation holds, i.e. verify that

$$
\sum_{\lambda} \epsilon_{\lambda}^{\mu *} \epsilon_{\lambda}^{\nu}=-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m_{W}^{2}} .
$$

