Exercises to "Standard Model of Particle Physics II"

Winter 2016/17

Problem 15: Discrete symmetries [5 Points]

A CP transformation takes a left-handed neutrino and transforms it into a right-handed antineutrino. Consider the probability $P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)$ of a neutrino of flavour α to oscillate into a flavour β after time t of propagation.
a) How do the discreet symmetries CP, T, and CPT change the initial and final states of the process given above, i.e. calculate

$$
\begin{gathered}
(\mathrm{CP})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{CP}), \\
(\mathrm{T})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{T}), \\
(\mathrm{CPT})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{CPT}) .
\end{gathered}
$$

b) The CPT theorem states that every QFT described by a Lorentz invariant, local Lagrangian is invariant under CPT transformations. How could the above result be used to test this theorem in Nature? (Hint: Consider the case $\alpha=\beta$, i.e. the survival probability of (anti-) neutrinos.)

Problem 16: Neutrino Oscillations and CP violation [15 Points]

Neutrinos are produced and detected in weak interactions, but the neutrino mass matrix is diagonal in a different basis. The unitary matrix U rotates the flavour basis into the mass eigenbasis. Consider a neutrino of flavour α produced at time $t=0$,

$$
\begin{equation*}
|\nu(t=0)\rangle=\left|\nu_{\alpha}\right\rangle=U_{\alpha j}^{*}\left|\nu_{j}\right\rangle \tag{1}
\end{equation*}
$$

as a superposition of mass eigenstates $\left|\nu_{j}\right\rangle$.
a) Using the following approximations, derive the most general expression for neutrino oscillations in vacuum,

$$
\begin{equation*}
P_{\alpha \beta} \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)=\delta_{\alpha \beta}-4 \sum_{j>i} \operatorname{Re}\left(\mathcal{I}_{\alpha \beta}^{i j}\right) \sin ^{2}\left(\frac{\Delta_{i j}}{2}\right)+2 \sum_{j>i} \operatorname{Im}\left(\mathcal{I}_{\alpha \beta}^{i j}\right) \sin \left(\Delta_{i j}\right), \tag{2}
\end{equation*}
$$

where $\mathcal{I}_{\alpha \beta}^{i j}=U_{\alpha i}^{*} U_{\beta i} U_{\beta j}^{*} U_{\alpha j}$ and $\Delta_{i j}=\frac{m_{i}^{2}-m_{j}^{2}}{2 E}$. To arrive at this expressions, you have to make the following assumptions:
i) Neutrinos are highly relativistic, such that the distance travelled is $L \simeq t(c=1)$ and $E_{i}=\sqrt{p_{i}^{2}+m_{i}^{2}} \simeq p_{i}\left(1+\frac{m_{i}^{2}}{2 p_{i}^{2}}\right)$.
ii) The central momentum of the neutrino beam is given by $p_{i} \simeq p \approx E$ for all i.
b) Derive the expression for the CP asymmetry $\mathcal{A}_{\alpha \beta} \equiv P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)-P\left(\bar{\nu}_{\beta} \rightarrow \bar{\nu}_{\alpha}, t\right)$. (Hint: How does the state (1) change under a CP transformation? Use this fact and Eq. (2)!
c) Consider now the special case of two neutrino flavours, say e and μ, hence

$$
U=\left(\begin{array}{cc}
\cos \theta & e^{-i \delta} \sin \theta \\
-e^{i \delta} \sin \theta & \cos \theta
\end{array}\right)
$$

Calculate the CP asymmetry for $e-\mu$ oscillations. What are the conditions for CP violation to occur?

Tutor:

Moritz Platscher
e-mail: moritz.platscher@mpi-hd.mpg.de
Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html
Hand-in and discussion of sheet:
Wednesday, 14:15, Phil12, R106

