Exercises to "Standard Model of Particle Physics II"

Winter 2019/20

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann
Sheet 07 November 27, 2019
Tutor: Carlos Jaramillo e-mail: carlos.jaramillo@mpi-hd.mpg.de
Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html
Hand-in of solutions:

Discussion of solutions:

December 4, 2019
15:45, Philosophenweg 12, kHS
December 11, 2019

Problem 15: Fermion mass matrix diagonalization [10 Points]

a) A hermitian $n \times n$ matrix $M=M^{\dagger}$ can always be diagonalized by a unitary transformation

$$
U M U^{\dagger}=D=\operatorname{diag}\left(m_{1}, m_{2}, \ldots, m_{n}\right)
$$

where the eigenvalues m_{i} can be negative as well as positive. Show that one can choose an appropriate bi-unitary transformation $U M V^{\dagger}$ to diagonalize M so that all diagonal elements are non-negative.
b) Consider an arbitrary complex $n \times n$ matrix A. Show that one can always find two unitary transformation matrices U and V such that $U A V^{\dagger}$ is diagonal with non-negative elements. Although it is not a formal requirement, you may assume that the eigenvalues of $A A^{\dagger}$ are non-zero, which will simplify the proof.
c) Now we know that the mass matrices for the SM fermions can be diagonalized by biunitary transformations with non-negative mass eigenvalues. The diagonalization in the charged lepton sector leads to a mixing for the charged leptons

$$
e_{L}=U^{\dagger} e_{L}^{\prime}, \quad \quad e_{R}=V^{\dagger} e_{R}^{\prime}
$$

where the primed (unprimed) fields denote the fields in the flavour (mass) basis. Note that since the interactions with W and Z are diagonal in flavor basis, they would mix different mass eigenstates. Show that in the case of massless neutrinos this mixing for the charged leptons would have no physical effect.
d) In the case of quarks, both the up-type and the down-type quarks have a mass matrix, such that diagonalization leads to

$$
\begin{array}{ll}
u_{L}=U_{u}^{\dagger} u_{L}^{\prime}, & u_{R}=V_{u}^{\dagger} u_{R}^{\prime} \\
d_{L}=U_{d}^{\dagger} d_{L}^{\prime}, & d_{R}=V_{d}^{\dagger} d_{R}^{\prime}
\end{array}
$$

Show that in this case the mixing of quarks does leave a physical effect in charged-current (coupling to W interactions). Give, in terms of the U and V matrices above, the 3-by- 3 matrix which describes the coupling between u, c, and t quarks in their mass basis with respect to d, s and b quarks in their mass basis in charged-current interactions. This is the famous Cabibbo-Kobayashi-Maskawa (CKM) matrix.

Problem 16: Custodial Symmetry and the ρ-Parameter [10 Points]
The 1-loop correction to the ρ-parameter is given by

$$
\Delta \rho=\frac{3 G_{F}}{8 \pi^{2} 2 \sqrt{2}}\left(m_{t}^{2}+m_{b}^{2}-2 \frac{m_{t}^{2} m_{b}^{2}}{m_{t}^{2}-m_{b}^{2}} \log \frac{m_{t}^{2}}{m_{b}^{2}}-\frac{11}{9} m_{Z}^{2} \sin ^{2} \theta_{W} \log \frac{m_{h}^{2}}{m_{Z}^{2}}\right)
$$

where $m_{t}\left(m_{b}\right)$ is the top (bottom) quark mass, θ_{W} the Weinberg angle and $m_{h}\left(m_{Z}\right)$ the mass of the Higgs (Z) boson.
a) Convince yourself that $\Delta \rho=0$ for $m_{t}=m_{b}$ and if the hypercharge gauge coupling is zero.
b) As discussed in the lecture, the Higgs potential is invariant under $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$. Define

$$
L=\binom{t}{b}_{L}, \quad R=\binom{t}{b}_{R} \quad \text { and } \Phi=(\phi, \tilde{\phi})
$$

with ϕ the Higgs doublet, $\widetilde{\phi}=i \sigma_{2} \phi^{*}$, and σ_{2} the second Pauli matrix. Show that the Lagrangian containing the top and bottom Yukawa couplings g_{t} and g_{b} is invariant under the $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$ symmetry only if $g_{t}=g_{b}$.
c) Show by analyzing the kinetic term of the Higgs boson that it is invariant under $\mathrm{SU}(2)_{\mathrm{L}} \times$ $\mathrm{SU}(2)_{\mathrm{R}}$ symmetry only if the hypercharge gauge coupling is zero. Start by writing down the covariant derivative on Φ (taking into account the fact that ϕ and $\tilde{\phi}$ have hypercharges 1 and -1 respectively).

