Exercises to "Standard Model of Particle Physics II"

Winter 2020/21

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann

Sheet 06 - December 9, 2020

Tutor: Cristina Benso e-mail: benso@mpi-hd.mpg.de
Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:
December 16, 2020 - via e-mail, before 14:00

Discussion of solutions: December 16, 2020 - on zoom

Problem 11: Optical Theorem [10 Points]

In the context of partial wave expansion, the scattering amplitude at an angle θ for the process $a+b \rightarrow c+d$ is given by

$$
f(\theta)=\frac{1}{2 k i} \sum_{l}(2 l+1)\left(\eta_{l} \mathrm{e}^{2 i \delta_{l}}-1\right) P_{l}(\cos \theta),
$$

where P_{l} are the Legendre-polynomials, θ is the scattering angle, k is the wavenumber in the incident direction and δ_{l} and η_{l} are both real functions. δ_{l} denotes the phase difference and η_{l} was introduced to describe inelastic scattering. We have $\eta_{l}=1$ for elastic and $\eta_{l}<1$ for inelastic scattering. The optical theorem states that the cross section in a forward scattering process is given by

$$
\sigma_{\mathrm{tot}}=\frac{4 \pi}{k} \operatorname{Im}[f(0)]
$$

a) Show with the help of the optical theorem that

$$
\sigma_{\mathrm{tot}}=\frac{2 \pi}{k^{2}} \sum_{l}(2 l+1)\left(1-\eta_{l} \cos \left(2 \delta_{l}\right)\right) .
$$

b) The differential cross section for elastic scattering is given by

$$
\frac{d \sigma_{\mathrm{el}}}{d \Omega}=|f(\theta)|^{2}
$$

From this, derive the following expression for the elastic scattering cross section

$$
\sigma_{\mathrm{el}}=\frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left|\eta_{l} \mathrm{e}^{2 i \delta_{l}}-1\right|^{2} .
$$

c) From a) and b) it follows that

$$
\sigma_{\mathrm{inel}}=\frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left(1-\eta_{l}^{2}\right) .
$$

Show with this equation that for the reaction $\nu_{\mu}+e^{-} \rightarrow \mu^{-}+\nu_{e}$ we obtain the relation

$$
\begin{equation*}
\sigma\left(\nu_{\mu}+e^{-} \rightarrow \mu^{-}+\nu_{e}\right) \leq \frac{2 \pi}{E_{\mathrm{cm}}^{2}} \tag{1}
\end{equation*}
$$

where E_{cm} denotes the center-of-mass energy (k should be considered in the center-of-mass system). Note that this is an $l=0$ scattering process and that a spin factor $1 /(2 s+1)$ should be taken into account.
d) In Fermi theory the cross section is given by

$$
\begin{equation*}
\sigma=\frac{G_{\mathrm{F}}^{2} s}{\pi} \tag{2}
\end{equation*}
$$

where G_{F} is Fermi's constant and \sqrt{s} denotes the invariant mass.
Use Eqs. (1) and (22) to find the energy at which Fermi theory breaks down.

Problem 12: Custodial Symmetry and the ρ-Parameter [10 Points]
The 1-loop correction to the ρ-parameter is given by

$$
\Delta \rho=\frac{3 G_{F}}{8 \pi^{2} 2 \sqrt{2}}\left(m_{t}^{2}+m_{b}^{2}-2 \frac{m_{t}^{2} m_{b}^{2}}{m_{t}^{2}-m_{b}^{2}} \log \frac{m_{t}^{2}}{m_{b}^{2}}-\frac{11}{9} m_{Z}^{2} \sin ^{2} \theta_{W} \log \frac{m_{h}^{2}}{m_{Z}^{2}}\right)
$$

where $m_{t}\left(m_{b}\right)$ is the top (bottom) quark mass, θ_{W} the Weinberg angle and $m_{h}\left(m_{Z}\right)$ the mass of the Higgs (Z) boson.
a) Convince yourself that $\Delta \rho=0$ for $m_{t}=m_{b}$ and if the hypercharge gauge coupling is zero.
b) As discussed in the lecture, the Higgs potential is invariant under $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$. Define

$$
L=\binom{t}{b}_{L}, \quad R=\binom{t}{b}_{R} \quad \text { and } \Phi=(\phi, \tilde{\phi})
$$

with ϕ the Higgs doublet, $\widetilde{\phi}=i \sigma_{2} \phi^{*}$, and σ_{2} the second Pauli matrix. Show that the Lagrangian containing the top and bottom Yukawa couplings g_{t} and g_{b} is invariant under the $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{SU}(2)_{\mathrm{R}}$ symmetry only if $g_{t}=g_{b}$.
c) Show by analyzing the kinetic term of the Higgs boson that it is invariant under $\mathrm{SU}(2)_{\mathrm{L}} \times$ $\mathrm{SU}(2)_{\mathrm{R}}$ symmetry only if the hypercharge gauge coupling is zero. Start by writing down the covariant derivative on Φ (taking into account the fact that ϕ and $\tilde{\phi}$ have hypercharges 1 and -1 respectively).

