Exercises to "Standard Model of Particle Physics II"

Winter 2020/21

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann Sheet 06 - December 9, 2020

Tutor: Cristina Benso e-mail: benso@mpi-hd.mpg.de Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:	Discussion of solutions:
December 16, 2020 - via e-mail, before 14:00	December 16, 2020 - on zoom

Problem 11: Optical Theorem [10 Points]

In the context of partial wave expansion, the scattering amplitude at an angle θ for the process $a + b \rightarrow c + d$ is given by

$$f(\theta) = \frac{1}{2ki} \sum_{l} (2l+1)(\eta_l e^{2i\delta_l} - 1)P_l(\cos\theta),$$

where P_l are the Legendre-polynomials, θ is the scattering angle, k is the wavenumber in the incident direction and δ_l and η_l are both real functions. δ_l denotes the phase difference and η_l was introduced to describe inelastic scattering. We have $\eta_l = 1$ for elastic and $\eta_l < 1$ for inelastic scattering. The optical theorem states that the cross section in a forward scattering process is given by

$$\sigma_{\rm tot} = \frac{4\pi}{k} {\rm Im} \left[f(0) \right].$$

a) Show with the help of the optical theorem that

$$\sigma_{\rm tot} = \frac{2\pi}{k^2} \sum_{l} (2l+1)(1-\eta_l \cos(2\delta_l)).$$

b) The differential cross section for elastic scattering is given by

$$\frac{d\sigma_{\rm el}}{d\Omega} = |f(\theta)|^2$$

From this, derive the following expression for the elastic scattering cross section

$$\sigma_{\rm el} = \frac{\pi}{k^2} \sum_{l} (2l+1) |\eta_l e^{2i\delta_l} - 1|^2.$$

c) From a) and b) it follows that

$$\sigma_{\text{inel}} = \frac{\pi}{k^2} \sum_{l} (2l+1)(1-\eta_l^2).$$

Show with this equation that for the reaction $\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$ we obtain the relation

$$\sigma(\nu_{\mu} + e^{-} \to \mu^{-} + \nu_{e}) \le \frac{2\pi}{E_{\rm cm}^{2}},\tag{1}$$

where $E_{\rm cm}$ denotes the center-of-mass energy (k should be considered in the center-of-mass system). Note that this is an l = 0 scattering process and that a spin factor 1/(2s+1) should be taken into account.

d) In Fermi theory the cross section is given by

$$\sigma = \frac{G_{\rm F}^2 s}{\pi},\tag{2}$$

where $G_{\rm F}$ is Fermi's constant and \sqrt{s} denotes the invariant mass.

Use Eqs. (1) and (2) to find the energy at which Fermi theory breaks down.

Problem 12: Custodial Symmetry and the ρ -Parameter [10 Points]

The 1-loop correction to the ρ -parameter is given by

$$\Delta \rho = \frac{3G_F}{8\pi^2 2\sqrt{2}} \left(m_t^2 + m_b^2 - 2\frac{m_t^2 m_b^2}{m_t^2 - m_b^2} \log \frac{m_t^2}{m_b^2} - \frac{11}{9} m_Z^2 \sin^2 \theta_W \log \frac{m_h^2}{m_Z^2} \right),$$

where $m_t (m_b)$ is the top (bottom) quark mass, θ_W the Weinberg angle and $m_h (m_Z)$ the mass of the Higgs (Z) boson.

- a) Convince yourself that $\Delta \rho = 0$ for $m_t = m_b$ and if the hypercharge gauge coupling is zero.
- b) As discussed in the lecture, the Higgs potential is invariant under $SU(2)_L \times SU(2)_R$. Define

$$L = \begin{pmatrix} t \\ b \end{pmatrix}_L$$
, $R = \begin{pmatrix} t \\ b \end{pmatrix}_R$ and $\Phi = \begin{pmatrix} \phi, \tilde{\phi} \end{pmatrix}_R$

with ϕ the Higgs doublet, $\tilde{\phi} = i\sigma_2\phi^*$, and σ_2 the second Pauli matrix. Show that the Lagrangian containing the top and bottom Yukawa couplings g_t and g_b is invariant under the SU(2)_L×SU(2)_R symmetry only if $g_t = g_b$.

c) Show by analyzing the kinetic term of the Higgs boson that it is invariant under $SU(2)_L \times SU(2)_R$ symmetry only if the hypercharge gauge coupling is zero. Start by writing down the covariant derivative on Φ (taking into account the fact that ϕ and $\tilde{\phi}$ have hypercharges 1 and -1 respectively).