Exercises to "Standard Model of Particle Physics II"

Winter 2016/17

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann

Sheet 6
23.11.16

Problem 11: Running couplings [10 Points]
a) In QED the coupling $\alpha=e^{2} / 4 \pi$ is a running coupling. For low energies one obtains $\alpha\left(\mu=m_{e}\right)=1 / 137$. The running of the QED coupling with only one lepton is given by

$$
\begin{equation*}
\alpha_{\mathrm{QED}}(\mu)=\frac{\alpha\left(m_{e}\right)}{1-\frac{2 \alpha\left(m_{e}\right)}{3 \pi} \ln \left(\frac{\mu}{m_{e}}\right)} . \tag{1}
\end{equation*}
$$

At which scale does $\alpha_{\mathrm{QED}}(\mu)$ become infinite? (If further charged leptons and quarks are considered, the coupling increases even faster.)
b) In QCD, with $\alpha_{s}=g_{3}^{2} / 4 \pi$, the running coupling

$$
\begin{equation*}
\alpha_{s}(\mu)=\frac{\alpha_{s}\left(\mu_{0}\right)}{1+\frac{(33-2 f) \alpha_{s}\left(\mu_{0}\right)}{6 \pi} \ln \left(\frac{\mu}{\mu_{0}}\right)} \tag{2}
\end{equation*}
$$

is obtained, where f denotes the respective number of quark flavours with mass $2 m_{q} \leq \mu$ in the considered energy range.
The experimental boundary conditions are $\alpha_{s}\left(\mu_{0}=m_{Z}=91 \mathrm{GeV}\right)=0.12, m_{t}=175 \mathrm{GeV}$, $m_{b}=4.8 \mathrm{GeV}, m_{c}=1.4 \mathrm{GeV}$ and $m_{u} \simeq m_{d} \simeq m_{s} \simeq 0$.
i) Determine the pole $\mu=\Lambda_{\mathrm{QCD}}$ of eq. (2).
ii) For which μ does the coupling $\alpha_{s}(\mu)$ become very small (asymptotic freedom), and where does perturbation theory break down?
iii) Determine the value of $\alpha_{s}(\mu)$ in the different energy ranges ($2 m_{q} \leq \mu \leq 2 m_{t}$ etc.) at the thresholds.
iv) $\alpha_{s}(\mu)$ should be continuous. However, from the threshold values calculated in the last part we saw that this is not yet true. To make $\alpha_{s}(\mu)$ continuous, promote μ_{0} to a function $\mu_{0}(f)$ with $\mu_{0}(f=5)=91 \mathrm{GeV}$. Find a relation between $\mu_{0}(f)$ and $\mu_{0}(f-1)$ assuming that $\alpha_{s}\left(\mu_{0}(f)\right)=0.12$ for all f. With this relation determine the values of $\mu_{0}(4)$ and $\mu_{0}(6)$.
c) Draw $\alpha_{s}^{-1}(\mu)$ and $\alpha_{Q E D}^{-1}(\mu)$ as functions of $\ln (\mu)$. What could the intersection of the curves indicate?

Problem 12: W-polarisation [5 Points]
For a massive vector boson with four-momentum $k^{\mu}=(E,|k| \vec{n})$ propagation along the direction $\vec{n}=(\sin \theta, 0, \cos \theta)$, the polarisation vectors corresponding to the helicities $\lambda=0, \pm 1$ can be written as

$$
\begin{aligned}
\epsilon_{\lambda=0}^{\mu} & =m_{W}^{-1}(|k|, E \sin \theta, 0, E \cos \theta), \\
\epsilon_{\lambda= \pm 1}^{\mu} & =\frac{1}{\sqrt{2}}(0, \mp \cos \theta,-i, \pm \sin \theta) .
\end{aligned}
$$

Check that the completeness relation holds, i.e. verify that

$$
\sum_{\lambda} \epsilon_{\lambda}^{\mu *} \epsilon_{\lambda}^{\nu}=-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{m_{W}^{2}} .
$$

Tutor:

Moritz Platscher
e-mail: moritz.platscher@mpi-hd.mpg.de
Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html
Hand-in and discussion of sheet:
Wednesday, 14:15, Phil12, R106

