Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann	Sheet 6	23.11.16
---	---------	----------

Problem 11: Running couplings [10 Points]

a) In QED the coupling $\alpha = e^2/4\pi$ is a running coupling. For low energies one obtains $\alpha(\mu = m_e) = 1/137$. The running of the QED coupling with only one lepton is given by

$$\alpha_{\text{QED}}(\mu) = \frac{\alpha(m_e)}{1 - \frac{2\alpha(m_e)}{3\pi} \ln(\frac{\mu}{m_e})} .$$
(1)

At which scale does $\alpha_{\text{QED}}(\mu)$ become infinite? (If further charged leptons and quarks are considered, the coupling increases even faster.)

b) In QCD, with $\alpha_s = g_3^2/4\pi$, the running coupling

$$\alpha_s(\mu) = \frac{\alpha_s(\mu_0)}{1 + \frac{(33 - 2f)\alpha_s(\mu_0)}{6\pi} \ln(\frac{\mu}{\mu_0})}$$
(2)

is obtained, where f denotes the respective number of quark flavours with mass $2m_q \leq \mu$ in the considered energy range.

The experimental boundary conditions are $\alpha_s(\mu_0 = m_Z = 91 \text{ GeV}) = 0.12$, $m_t = 175 \text{ GeV}$, $m_b = 4.8 \text{ GeV}$, $m_c = 1.4 \text{ GeV}$ and $m_u \simeq m_d \simeq m_s \simeq 0$.

- i) Determine the pole $\mu = \Lambda_{\text{QCD}}$ of eq. (2).
- ii) For which μ does the coupling $\alpha_s(\mu)$ become very small (asymptotic freedom), and where does perturbation theory break down?
- iii) Determine the value of $\alpha_s(\mu)$ in the different energy ranges $(2m_q \le \mu \le 2m_t \text{ etc.})$ at the thresholds.
- iv) $\alpha_s(\mu)$ should be continuous. However, from the threshold values calculated in the last part we saw that this is not yet true. To make $\alpha_s(\mu)$ continuous, promote μ_0 to a function $\mu_0(f)$ with $\mu_0(f=5) = 91$ GeV. Find a relation between $\mu_0(f)$ and $\mu_0(f-1)$ assuming that $\alpha_s(\mu_0(f)) = 0.12$ for all f. With this relation determine the values of $\mu_0(4)$ and $\mu_0(6)$.
- c) Draw $\alpha_s^{-1}(\mu)$ and $\alpha_{\text{QED}}^{-1}(\mu)$ as functions of $\ln(\mu)$. What could the intersection of the curves indicate?

Problem 12: W-polarisation [5 Points]

For a massive vector boson with four-momentum $k^{\mu} = (E, |k|\vec{n})$ propagation along the direction $\vec{n} = (\sin \theta, 0, \cos \theta)$, the polarisation vectors corresponding to the helicities $\lambda = 0, \pm 1$ can be written as

$$\epsilon_{\lambda=0}^{\mu} = m_W^{-1} \left(|k|, E \sin \theta, 0, E \cos \theta \right),$$

$$\epsilon_{\lambda=\pm 1}^{\mu} = \frac{1}{\sqrt{2}} \left(0, \mp \cos \theta, -i, \pm \sin \theta \right).$$

Check that the completeness relation holds, i.e. verify that

$$\sum_{\lambda} \epsilon_{\lambda}^{\mu *} \epsilon_{\lambda}^{\nu} = -g^{\mu\nu} + \frac{k^{\mu}k^{\nu}}{m_W^2}.$$

Tutor: Moritz Platscher e-mail: moritz.platscher@mpi-hd.mpg.de

Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in and discussion of sheet: Wednesday, 14:15, Phil12, R106