Exercises to "Standard Model of Particle Physics II"

Winter 2020/21

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann

Sheet 03 - November 18, 2020

Tutor: Cristina Benso e-mail: benso@mpi-hd.mpg.de
Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:
November 25, 2020 - via e-mail, before 14:00

Discussion of solutions:

November 25, 2020 - on zoom

Problem 6: Goldstone's theorem [15 Points]

Goldstone's theorem states:
Every generator of a continuous global symmetry, which does not annihilate the vacuum, corresponds to a massless scalar particle.

To demonstrate this, consider the Lagrangian $\mathscr{L}\left(\phi_{i}, \partial_{\mu} \phi_{i}\right)$ with n real scalar fields ϕ_{i}, invariant under the global transformation $\phi_{i} \rightarrow\left\{\exp \left(i \theta^{a} T^{a}\right)\right\}_{i j} \phi_{j}$. Defining $\Phi \equiv\left(\phi_{1}, \ldots, \phi_{n}\right)^{T}$, we can write this transformation as $\Phi \rightarrow \exp \left(i \theta^{a} T^{a}\right) \Phi$.
a) What are the properties of the $i T^{a}$, if the ϕ_{i} are real, and if $\Phi^{T} \Phi$ is invariant under the global transformation?
b) Show that from the conservation of the Noether current, it follows that:

$$
\frac{\partial \mathscr{L}}{\partial \phi_{i}}\left(i T^{a}\right)_{i j} \phi_{j}+\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} \phi_{i}\right)}\left(i T^{a}\right)_{i j} \partial^{\mu} \phi_{j}=0 .
$$

c) Let $\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{T}\left(\partial^{\mu} \Phi\right)-V(\Phi)$. Show with the help of the first two results that

$$
\frac{\partial V}{\partial \phi_{i}}\left(i T^{a}\right)_{i j} \phi_{j}=0
$$

d) Let \vec{v} be the minimum of $V(\Phi)$. Show with the results from above that $M^{2}\left(i T^{a}\right) \vec{v}=0$, where $M_{i j}^{2}$ is given by

$$
\left.\left(M^{2}\right)_{i j} \equiv \frac{\partial^{2} V}{\partial \phi_{i} \partial \phi_{j}}\right|_{\Phi=\vec{v}}
$$

e) The matrix M^{2} is interpreted as a mass matrix. The broken vacuum \vec{v} is in general not invariant under the transformations $\exp \left(i \theta^{a} T^{a}\right)$. If $T^{a} \vec{v}=0$, one has a Wigner-Weyl realization of the symmetry, if $T^{a} \vec{v} \neq 0$ one has a realization à la Nambu-Goldstone. With the result from d) it follows that for all a with $T^{a} \vec{v} \neq 0$ the mass matrix has an eigenvector with eigenvalue 0 .
As an explicit example, consider the Lagrangian

$$
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{T}\left(\partial^{\mu} \Phi\right)-V\left(\Phi^{T} \Phi\right)
$$

with the potential

$$
V\left(\Phi^{T} \Phi\right)=\frac{1}{2} \mu^{2} \Phi^{T} \Phi+\frac{1}{4} \lambda\left(\Phi^{T} \Phi\right)^{2},
$$

where $\Phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)^{T}$ is a triplet of real and scalar particles. The coupling obeys $\lambda>0$.
(i) Show that \mathscr{L} is invariant under an $\mathrm{SU}(2)$ transformation $\Phi \rightarrow \exp \left(i \theta^{a} T^{a}\right) \Phi$. The three generators T^{a} of $\mathrm{SU}(2)$ are written here as $\left(T^{a}\right)_{i j}=-i \epsilon_{a i j}$ (this is called the adjoint representation of $\mathrm{SU}(2))$.
(ii) For $\mu^{2}<0$ the potential has a minimum $\vec{v}^{T}=(0,0, v)$ with $v \neq 0$. Derive a relation between v, μ^{2}, and λ. Show that the vacuum state \vec{v} is invariant under a transformation generated by T^{3}, but not T^{1} and T^{2}. That is, the vacuum state does not possess the symmetry of the Lagrangian (spontaneous symmetry breaking). Why do we speak in this case of spontaneous symmetry breaking from $\mathrm{SU}(2)$ to $\mathrm{U}(1)$?
(iii) The scalar fields will be expanded around the minimum, $\Phi^{T} \equiv\left(\phi_{1}, \phi_{2}, v+\phi_{3}\right)$, i.e. we treat ϕ_{3} as a field fluctuating around v instead of 0 . Show by inserting into the above Lagrangian that there is one massive scalar field and two massless Goldstone bosons. What is the mass of ϕ_{3} ? Convince yourself that the matrix M^{2} defined in d) is really the mass matrix.

Problem 7: Noether's theorem revised [5 Points]

Consider a Lagrange density of the general form $\mathscr{L}=\mathscr{L}_{0}\left(u, \partial_{\mu} u\right)$. From Noether's theorem we know that if the Lagrange density is left invariant by a symmetry transformation this leads to the conserved current

$$
J^{\mu}=\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} u\right)} \delta u
$$

Now imagine that we add a term \mathscr{L}_{1} to the Lagrange density (so that $\mathscr{L}=\mathscr{L}_{0}+\mathscr{L}_{1}$) that does not respect the symmetry. Show that in this case the new current is not conserved any more, that is,

$$
\partial_{\mu} J^{\mu} \neq 0 .
$$

