Exercises to "Standard Model of Particle Physics II"

Winter 2016/17
Sheet 3
2.11.16

Problem 6: Goldstone theorem [15 Points]

The Goldstone-Theorem states: every generator of a continuous global symmetry, which does not annihilate the vacuum, corresponds to a massless scalar particle.
As "proof", consider the Lagrangian $\mathcal{L}\left(\Phi_{i}, \partial_{\mu} \Phi_{i}\right)$ with real scalar fields Φ_{i}, invariant under the global transformation $\vec{\Phi} \rightarrow \exp \left(i \theta^{a} T^{a}\right) \vec{\Phi}$.
a) Which properties have the $i T^{a}$, if the Φ_{i} are real and if $\Phi^{T} \Phi$ is invariant under the transformation?
b) Show that from the conservation of the Noether current, it follows that:

$$
\frac{\partial \mathcal{L}}{\partial \Phi_{i}}\left(i T^{a}\right)_{i j} \Phi_{j}+\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \Phi_{i}\right)}\left(i T^{a}\right)_{i j} \partial^{\mu} \Phi_{j}=0
$$

c) Let $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \vec{\Phi}\right)^{T}\left(\partial^{\mu} \vec{\Phi}\right)-V(\vec{\Phi})$. Show with the help of the first two results that

$$
\frac{\partial V}{\partial \Phi_{i}}\left(i T^{a}\right)_{i j} \Phi_{j}=0
$$

d) Let \vec{v} be the minimum of $V(\vec{\Phi})$. Show with the results from above that $M^{2}\left(i T^{a}\right) \vec{v}=0$, where $M_{i j}^{2}$ is given by

$$
\left(M^{2}\right)_{i j}:=\left.\frac{\partial^{2} V}{\partial \Phi_{i} \partial \Phi_{j}}\right|_{\vec{\Phi}=\vec{v}}
$$

e) The matrix M^{2} is interpreted as a mass matrix. The broken vacuum \vec{v} is in general not invariant under the transformations $\exp \left(i \theta^{a} T^{a}\right)$. If $T^{a} \vec{v}=0$, one has a Wigner-Weyl realization of the symmetry, if $T^{a} \vec{v} \neq 0$ one has a realization à la Nambu-Goldstone. With the result from the last point it follows that for all a with $T^{a} \vec{v} \neq 0$ the mass matrix has an eigenvector with eigenvalue 0 .
Consider e.g. the Lagrangian $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \vec{\Phi}\right)^{T}\left(\partial^{\mu} \vec{\Phi}\right)-V\left(\vec{\Phi}^{T} \vec{\Phi}\right)$ with the potential $V\left(\vec{\Phi}^{T} \vec{\Phi}\right)=$ $\frac{1}{2} \mu^{2} \vec{\Phi}^{T} \vec{\Phi}+\frac{1}{4} \lambda\left(\vec{\Phi}^{T} \vec{\Phi}\right)^{2}$, where $\vec{\Phi}^{T}=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ is a triplet of real and scalar particles. The coupling obeys $\lambda>0$.
(i) Show that \mathcal{L} is invariant under an $S U(2)$ transformation $\vec{\Phi} \rightarrow \exp \left(i \theta^{a} T^{a}\right) \vec{\Phi}$. The 3 generators T^{a} of $S U(2)$ are written here as $\left(T^{a}\right)_{i j}=-i \epsilon_{a i j}$ (this is called the adjoint representation of $S U(2))$.
(ii) For $\mu^{2}<0$ the potential has a minimum for $\vec{v}^{T}=(0,0, v)$. How are v, μ^{2} and λ connected? Show that the vacuum state \vec{v} is invariant under the transformation with T^{3}, but not with T^{1} and T^{2}. That is, the vacuum state does not possess the symmetry of the Lagrangian (spontaneous symmetry breaking). Why do we speak in this case of spontaneous symmetry breaking from $S U(2)$ to $U(1)$?
(iii) The scalar fields will be expanded around the minimum: $\vec{\Phi}^{T} \equiv\left(\phi_{1}, \phi_{2}, v+\phi_{3}\right)$. Show by inserting into the above Lagrangian that there is one massive scalar field and 2 massless Goldstone bosons. What is the mass of ϕ_{3} ? Convince yourself that the matrix M^{2} from part d) is really the mass matrix.

Tutor:

Moritz Platscher
e-mail: moritz.platscher@mpi-hd.mpg.de
Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html
Hand-in and discussion of sheet:
Wednesday, 14:15, Phil12, R106

