Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann	Sheet 3	2.11.16
---	---------	---------

Problem 6: Goldstone theorem [15 Points]

The Goldstone–Theorem states: every generator of a continuous global symmetry, which does not annihilate the vacuum, corresponds to a massless scalar particle.

As "proof", consider the Lagrangian $\mathcal{L}(\Phi_i, \partial_\mu \Phi_i)$ with real scalar fields Φ_i , invariant under the global transformation $\vec{\Phi} \to \exp(i\theta^a T^a) \vec{\Phi}$.

a) Which properties have the iT^a , if the Φ_i are real and if $\Phi^T \Phi$ is invariant under the transformation?

b) Show that from the conservation of the Noether current, it follows that:

$$\frac{\partial \mathcal{L}}{\partial \Phi_i} (iT^a)_{ij} \Phi_j + \frac{\partial \mathcal{L}}{\partial (\partial^\mu \Phi_i)} (iT^a)_{ij} \partial^\mu \Phi_j = 0$$

c) Let $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \vec{\Phi})^T (\partial^{\mu} \vec{\Phi}) - V(\vec{\Phi})$. Show with the help of the first two results that

$$\frac{\partial V}{\partial \Phi_i} \, (iT^a)_{ij} \, \Phi_j = 0.$$

d) Let \vec{v} be the minimum of $V(\vec{\Phi})$. Show with the results from above that $M^2(iT^a)\vec{v}=0$, where M_{ij}^2 is given by

$$(M^2)_{ij} := \left. \frac{\partial^2 V}{\partial \Phi_i \, \partial \Phi_j} \right|_{\vec{\Phi} = \vec{v}}$$

e) The matrix M^2 is interpreted as a mass matrix. The broken vacuum \vec{v} is in general not invariant under the transformations $\exp(i\theta^a T^a)$. If $T^a \vec{v} = 0$, one has a Wigner-Weyl realization of the symmetry, if $T^a \vec{v} \neq 0$ one has a realization à la Nambu-Goldstone. With the result from the last point it follows that for all a with $T^a \vec{v} \neq 0$ the mass matrix has an eigenvector with eigenvalue 0.

Consider e.g. the Lagrangian $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \vec{\Phi})^T (\partial^{\mu} \vec{\Phi}) - V(\vec{\Phi}^T \vec{\Phi})$ with the potential $V(\vec{\Phi}^T \vec{\Phi}) = \frac{1}{2} \mu^2 \vec{\Phi}^T \vec{\Phi} + \frac{1}{4} \lambda (\vec{\Phi}^T \vec{\Phi})^2$, where $\vec{\Phi}^T = (\phi_1, \phi_2, \phi_3)$ is a triplet of real and scalar particles. The coupling obeys $\lambda > 0$.

- (i) Show that \mathcal{L} is invariant under an SU(2) transformation $\vec{\Phi} \to \exp(i\theta^a T^a)\vec{\Phi}$. The 3 generators T^a of SU(2) are written here as $(T^a)_{ij} = -i\epsilon_{aij}$ (this is called the adjoint representation of SU(2)).
- (ii) For $\mu^2 < 0$ the potential has a minimum for $\vec{v}^T = (0, 0, v)$. How are v, μ^2 and λ connected? Show that the vacuum state \vec{v} is invariant under the transformation with T^3 , but not with T^1 and T^2 . That is, the vacuum state does *not* possess the symmetry of the Lagrangian (spontaneous symmetry breaking). Why do we speak in this case of spontaneous symmetry breaking from SU(2) to U(1)?
- (iii) The scalar fields will be expanded around the minimum: $\vec{\Phi}^T \equiv (\phi_1, \phi_2, v + \phi_3)$. Show by inserting into the above Lagrangian that there is one massive scalar field and 2 massless Goldstone bosons. What is the mass of ϕ_3 ? Convince yourself that the matrix M^2 from part d) is really the mass matrix.

Tutor:

Moritz Platscher e-mail: moritz.platscher@mpi-hd.mpg.de

Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in and discussion of sheet:

Wednesday, 14:15, Phil12, R106