Exercises to "Standard Model of Particle Physics II"

Winter 2020/21

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann Sheet 02 - November 11, 2020

Tutor: Cristina Benso e-mail: benso@mpi-hd.mpg.de Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:	Discussion of solutions:
November 18, 2020 - via e-mail, before 14:00	November 18, 2020 - on zoom

Problem 4: SU(N) [10 Points]

Let $U \in SU(N)$, i.e. det U = 1 and $U^{\dagger}U = \mathbb{1}$. Any element of SU(N) can be written as $U = \exp(-i\theta^a T^a)$, where the T^a are generators of the group with normalization $Tr(T^a T^b) = \frac{1}{2}\delta^{ab}$.

- a) Show that the T^a are traceless hermitian matrices.
- b) How many linear independent generators are there?
- c) The structure constants, d_{abc} and f_{abc} , are defined through

$$[T^a, T^b] = i f_{abc} T^c, \qquad \{T^a, T^b\} = \frac{1}{N} \delta_{ab} + d_{abc} T^c.$$

Show that

$$\operatorname{Tr}(T^{a} T^{b} T^{c}) = \frac{1}{4} (d_{abc} + i f_{abc}), \\ \left[\sum_{a} T^{a} T^{a}, T^{b} \right] = 0, \\ \left[T^{a}, [T^{b}, T^{c}] \right] + \left[T^{c}, [T^{a}, T^{b}] \right] + \left[T^{b}, [T^{c}, T^{a}] \right] = 0.$$

- d) Show that the structure constants form a representation of SU(N), i.e. take $(T^a)_{bc} = -if_{abc}$ as a generator. This is the so-called adjoint representation.
- e) Calculate the f_{abc} for

$$T^a = \frac{\sigma^a}{2} \,,$$

where a runs from 1 to 3, and σ^a are the Pauli matrices:

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Problem 5: From QED to QCD [10 points]

In **Problem 2** we showed that in QED $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is *invariant* under the U(1) gauge transformation $A_{\mu} \to A_{\mu} + \frac{1}{e}\partial_{\mu}\alpha(x)$. For QCD, this gauge transformation is generalised to $A_{\mu} \to U(x)\left(A_{\mu} + \frac{i}{g}\partial_{\mu}\right)U(x)^{\dagger}$, while the quarks obey $\psi \to U(x)\psi$, where ψ carries one SU(N) index, $A_{\mu} \equiv A_{\mu}^{a}T^{a}$ is now matrix-valued, and $U(x) \in SU(N)$.

a) Using the U(1) covariant derivative $D_{\mu} = \partial_{\mu} - ieA_{\mu}$, show that

$$[D_{\mu}, D_{\nu}] \psi = -ie F_{\mu\nu} \psi ,$$

where ψ is the electron field.

b) For a set of parameters α^a , the transformation matrix of QCD is $U(x)_{ij} = \exp(i\alpha^a T^a)_{ij}$. Using the infinitesimal version of the gauge transformation of the gluon field, $A_\mu \to A_\mu + \frac{1}{g}(\partial_\mu \alpha^a)T^a + i\left[\alpha^a T^a, A^b_\mu T^b\right]$, show that

$$D_{\mu}\psi \to (1+i\alpha^a T^a)D_{\mu}\psi$$

with the QCD covariant derivative $D_{\mu} = \partial_{\mu} - igA^a_{\mu}T^a$.

- c) In analogy to QED, we can define the QCD field strength matrix $F_{\mu\nu} = F^a_{\mu\nu}T^a$ via $[D_\mu, D_\nu]\psi = -igF^a_{\mu\nu}T^a\psi$, which is no longer invariant. Compute $F^a_{\mu\nu}$.
- d) Show that the QCD Lagrangian is gauge-invariant.

$$\mathcal{L}_{\text{QCD}} = \overline{\psi}(iD\!\!/ - m)\psi - \frac{1}{4}F^a_{\mu\nu}F^{a\,\mu\nu}\,.$$

Hint: This is a one-line proof if you use b) and c).