Exercises to "Standard Model of Particle Physics II"

Winter 2016/17

Problem 4: $S U(N)$ [10 Points]
Let $U \in \operatorname{SU}(N)$, i.e. det $U=1$ and $U^{\dagger} U=\mathbb{1}$. Any element of $\operatorname{SU}(N)$ can be written as $U=$ $\exp \left(-i \theta^{a} T^{a}\right)$, where the T^{a} are generators of the group with normalization $\operatorname{Tr}\left(T^{a} T^{b}\right)=\frac{1}{2} \delta^{a b}$.
a) Show that the T^{a} are traceless hermitian matrices.
b) How many linear independent generators are there?
c) The structure constants, $d_{a b c}$ and $f_{a b c}$, are defined through

$$
\left[T^{a}, T^{b}\right]=i f_{a b c} T^{c}, \quad\left\{T^{a}, T^{b}\right\}=\frac{1}{N} \delta_{a b}+d_{a b c} T^{c}
$$

Show that

$$
\begin{gathered}
\operatorname{Tr}\left(T^{a} T^{b} T^{c}\right)=\frac{1}{4}\left(d_{a b c}+i f_{a b c}\right) \\
{\left[\sum_{a} T^{a} T^{a}, T^{b}\right]=0} \\
{\left[T^{a},\left[T^{b}, T^{c}\right]\right]+\left[T^{c},\left[T^{a}, T^{b}\right]\right]+\left[T^{b},\left[T^{c}, T^{a}\right]\right]=0}
\end{gathered}
$$

d) Show that the structure constants form a representation of $\operatorname{SU}(N)$, i.e. take $\left(T^{a}\right)_{b c}=$ $-i f_{a b c}$ as a generator. This is the so-called adjoint representation.
e) Calculate the $f_{a b c}$ for

$$
T^{a}=\frac{\sigma^{a}}{2}
$$

where σ^{a} are the Pauli matrices:

$$
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Problem 5: From $Q E D$ to $Q C D$ [10 points]
In Problem 2 we showed that in QED $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ is invariant und the $\mathrm{U}(1)$ gauge transformation $A_{\mu} \rightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} \alpha(x)$. For QCD , this gauge transformation is generalised to $A_{\mu} \rightarrow U(x)\left(A_{\mu}+\frac{i}{g} \partial_{\mu}\right) U(x)^{\dagger}$, while the quarks obey $\psi \rightarrow U(x) \psi$, where ψ carries one $\operatorname{SU}(N)$ index, $A_{\mu} \equiv A_{\mu}^{a} T^{a}$ is now matrix-valued, and $U(x) \in \mathrm{SU}(N)$.
a) Using the $\mathrm{U}(1)$ covariant derivative $D_{\mu}=\partial_{\mu}-i e A_{\mu}$, show that

$$
\left[D_{\mu}, D_{\nu}\right] \psi=-i e F_{\mu \nu} \psi
$$

where ψ is the electron field.
b) For a set of parameters α^{a}, the transformation matrix of QCD is $U(x)_{i j}=\exp \left(i \alpha^{a} T^{a}\right)_{i j}$. Using the infinitesimal version of the gauge transformation of the gluon field, $A_{\mu} \rightarrow$ $A_{\mu}+\frac{1}{g}\left(\partial_{\mu} \alpha^{a}\right) T^{a}+i\left[\alpha^{a} T^{a}, A_{\mu}^{b} T^{b}\right]$, show that

$$
D_{\mu} \psi \rightarrow\left(1+i \alpha^{a} T^{a}\right) D_{\mu} \psi,
$$

with the QCD covariant derivative $D_{\mu}=\partial_{\mu}-i g A_{\mu}^{a} T^{a}$.
c) In analogy to QED, we can define the QCD field strength matrix $F_{\mu \nu}=F_{\mu \nu}^{a} T^{a}$ via $\left[D_{\mu}, D_{\nu}\right] \psi=-i g F_{\mu \nu}^{a} T^{a} \psi$, which is no longer invariant. Compute $F_{\mu \nu}^{a}$.
d) Show that the QCD Lagrangian is gauge-invariant.

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\psi}(i \mid D-m) \psi-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} .
$$

hint: This is a one line proof if you use b) and c).

Tutor:

Moritz Platscher
e-mail: moritz.platscher@mpi-hd.mpg.de
Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html
Hand-in and discussion of sheet:
Wednesday, 14:15

