Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann	Sheet 1	19.10.16
---	---------	----------

Problem 1: Global symmetry transformations [5 Points]

a) Derive the Noether theorem for a global symmetry transformation of the following Lagrange density:

$$\mathscr{L} = \mathscr{L}(u_i, \partial_\mu u_i)$$

In other words, find an expression for the conserved current under the field transformation $u_i(x) \rightarrow u'_i(x) = u_j(x)e^{iT^k_{ij}\epsilon_k} \cong u_i(x) + \delta u_i(x)$ with $\delta u_i(x) = iT^k_{ij}\epsilon_k u_j(x)$. Here the T^k_{ij} denote the generators of the algebra of the corresponding symmetry group and ϵ_k the infinitesimal, space-time independent coefficients.

b) Apply your formula to the Lagrange density of a massive complex scalar field:

$$\mathscr{L} = (\partial_{\mu}\phi)(\partial^{\mu}\phi^*) - m^2\phi^*\phi$$

What is the conserved current in this case? Hint: Use $\phi(x) \rightarrow \phi'(x) = e^{i\epsilon}\phi(x)$ as transformation of the scalar field.

Problem 2: Local symmetry transformations in QED [5 Points]

Show that the Lagrange density of QED

$$\mathscr{L}_{\text{QED}} = \overline{\psi}(i\not\!\!D - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} ,$$

with $D_{\mu} = \partial_{\mu} - ieA_{\mu}$ and $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, is invariant under the local symmetry transformations

$$\psi \to \psi' = e^{-i\epsilon(x)}\psi, \qquad \overline{\psi} \to \overline{\psi'} = \overline{\psi}e^{i\epsilon(x)},$$

$$A_{\mu} \to A'_{\mu} = A_{\mu} - \frac{1}{e} \partial_{\mu} \epsilon(x).$$

Local symmetry means that now the infinitesimal parameter $\epsilon(x)$ depend on the space-time coordinates.

Problem 3: General local symmetry transformations [10 Points]

Now, we want the general Lagrange density $\mathscr{L} = \mathscr{L}(u_i, \partial_\mu u_i)$ to be invariant under a local symmetry transformation. In analogy with **Problem 1**, the fields u_i transform as

$$u_i(x) \to u'_i(x) = u_j(x)e^{iT^k_{ij}\epsilon_k(x)} \cong u_i(x) + \delta u_i(x)$$

with

$$\delta u_i(x) = iT_{ij}^k \epsilon_k(x) u_j(x).$$

- a) Considering the transformation properties of the u_i 's given above, show that we need to introduce a new field to keep \mathscr{L} invariant under the local symmetry transformation.
- b) Extend the system by a set of additional vector fields $A_{\mu k}$ (one for each generator T_{ij}^k), so that the Lagrange density does not depend on their derivatives: $\mathscr{L} = \mathscr{L}(u_i, \partial_{\mu} u_i, A_{\mu k})$. Assume that the transformation properties of the new fields are of the following form (where P and R denote, at first, unspecified matrices):

$$A_{\mu l}(x) \to A'_{\mu l}(x) = A_{\mu l}(x) + P^k_{lm} A_{\mu m}(x) \epsilon_k(x) + R^k_l \partial_\mu \epsilon_k(x).$$

Derive general conditions for the matrices P and R from the variational principle.

c) Consider the following Lagrange density

$$\mathscr{L} = \frac{1}{2} (D^{\mu} u_i) (D_{\mu} u_i),$$

where the covariant derivative of the fields u_i is given by $D_{\mu}u_i = \partial_{\mu}u_i + g\epsilon_{ijk}A_{\mu j}u_k$ and ϵ_{ijk} denotes the totally anti-symmetric tensor. Taking in account the results from b) find a relation between the matrix R_l^k and the generators T_{ij}^k .

Bonus Exercise: Can you find a solution for the matrix P_{lm}^k ?

Discussion: Compare global and local symmetries. How would you interpret the physical meaning of locally conserved quantities?

Tutor: Moritz Platscher e-mail: moritz.platscher@mpi-hd.mpg.de

Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in and discussion of sheet: Tuesdays, 16:15, INF501, CIP R.103