# Exercises to "Standard Model of Particle Physics II" 

Winter 2016/17

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann

Sheet 1
19.10.16

Problem 1: Global symmetry transformations [5 Points]
a) Derive the Noether theorem for a global symmetry transformation of the following Lagrange density:

$$
\mathscr{L}=\mathscr{L}\left(u_{i}, \partial_{\mu} u_{i}\right)
$$

In other words, find an expression for the conserved current under the field transformation $u_{i}(x) \rightarrow u_{i}^{\prime}(x)=u_{j}(x) e^{i T_{i j}^{k} \epsilon_{k}} \cong u_{i}(x)+\delta u_{i}(x)$ with $\delta u_{i}(x)=i T_{i j}^{k} \epsilon_{k} u_{j}(x)$. Here the $T_{i j}^{k}$ denote the generators of the algebra of the corresponding symmetry group and $\epsilon_{k}$ the infinitesimal, space-time independent coefficients.
b) Apply your formula to the Lagrange density of a massive complex scalar field:

$$
\mathscr{L}=\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi^{*}\right)-m^{2} \phi^{*} \phi
$$

What is the conserved current in this case?
Hint: Use $\phi(x) \rightarrow \phi^{\prime}(x)=e^{i \epsilon} \phi(x)$ as transformation of the scalar field.

Problem 2: Local symmetry transformations in QED [5 Points]
Show that the Lagrange density of QED

$$
\mathscr{L}_{\mathrm{QED}}=\bar{\psi}(i \not D-m) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

with $D_{\mu}=\partial_{\mu}-i e A_{\mu}$ and $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$, is invariant under the local symmetry transformations

$$
\begin{gathered}
\psi \rightarrow \psi^{\prime}=e^{-i \epsilon(x)} \psi, \quad \bar{\psi} \rightarrow \overline{\psi^{\prime}}=\bar{\psi} e^{i \epsilon(x)}, \\
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}-\frac{1}{e} \partial_{\mu} \epsilon(x) .
\end{gathered}
$$

Local symmetry means that now the infinitesimal parameter $\epsilon(x)$ depend on the space-time coordinates.

Problem 3: General local symmetry transformations [10 Points]
Now, we want the general Lagrange density $\mathscr{L}=\mathscr{L}\left(u_{i}, \partial_{\mu} u_{i}\right)$ to be invariant under a local symmetry transformation. In analogy with Problem 1, the fields $u_{i}$ transform as

$$
u_{i}(x) \rightarrow u_{i}^{\prime}(x)=u_{j}(x) e^{i T_{i j}^{k} \epsilon_{k}(x)} \cong u_{i}(x)+\delta u_{i}(x)
$$

with

$$
\delta u_{i}(x)=i T_{i j}^{k} \epsilon_{k}(x) u_{j}(x) .
$$

a) Considering the transformation properties of the $u_{i}$ 's given above, show that we need to introduce a new field to keep $\mathscr{L}$ invariant under the local symmetry transformation.
b) Extend the system by a set of additional vector fields $A_{\mu k}$ (one for each generator $T_{i j}^{k}$ ), so that the Lagrange density does not depend on their derivatives: $\mathscr{L}=\mathscr{L}\left(u_{i}, \partial_{\mu} u_{i}, A_{\mu k}\right)$. Assume that the transformation properties of the new fields are of the following form (where $P$ and $R$ denote, at first, unspecified matrices):

$$
A_{\mu l}(x) \rightarrow A_{\mu l}^{\prime}(x)=A_{\mu l}(x)+P_{l m}^{k} A_{\mu m}(x) \epsilon_{k}(x)+R_{l}^{k} \partial_{\mu} \epsilon_{k}(x) .
$$

Derive general conditions for the matrices $P$ and $R$ from the variational principle.
c) Consider the following Lagrange density

$$
\mathscr{L}=\frac{1}{2}\left(D^{\mu} u_{i}\right)\left(D_{\mu} u_{i}\right),
$$

where the covariant derivative of the fields $u_{i}$ is given by $D_{\mu} u_{i}=\partial_{\mu} u_{i}+g \epsilon_{i j k} A_{\mu j} u_{k}$ and $\epsilon_{i j k}$ denotes the totally anti-symmetric tensor. Taking in account the results from b) find a relation between the matrix $R_{l}^{k}$ and the generators $T_{i j}^{k}$.

Bonus Exercise: Can you find a solution for the matrix $P_{l m}^{k}$ ?

Discussion: Compare global and local symmetries. How would you interpret the physical meaning of locally conserved quantities?

## Tutor:

Moritz Platscher
e-mail: moritz.platscher@mpi-hd.mpg.de
Lecture webpage: www.mpi-hd.mpg.de/manitop/StandardModel2/index.html
Hand-in and discussion of sheet:
Tuesdays, 16:15, INF501, CIP R. 103

