Exercises to "Standard Model of Particle Physics II"

Winter 2019/20

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann Sheet 13 (Bonus) January 29, 2020

Tutor: Carlos Jaramillo e-mail: carlos.jaramillo@mpi-hd.mpg.de Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:		Discussion of solutions:
February 5, 2020	15:45, Philosophenweg 12, kHS	February 5, 2020

This is a bonus exercise sheet. Hand-in is voluntary.

Problem 26: Left-right symmetric electroweak model [10 Points]

The left-right symmetric model can be introduced by assuming right-handed fermion doublets in analogy to the left-handed ones. The quark and lepton spectra consist of

$$Q_{\mathrm{L, R}}^{i} = \begin{pmatrix} U_{\mathrm{L, R}}^{i} \\ D_{\mathrm{L, R}}^{i} \end{pmatrix}; \qquad L_{\mathrm{L, R}}^{i} = \begin{pmatrix} \nu_{\mathrm{L, R}}^{i} \\ e_{\mathrm{L, R}}^{i} \end{pmatrix},$$

with the following $SU(2)_L$, $SU(2)_R$, $U(1)_{B-L}$ transformation properties:

$$Q_{\rm L}: (2_{\rm L}, 1_{\rm R}, 1/3); \qquad \qquad L_{\rm L}: (2_{\rm L}, 1_{\rm R}, -1); \\ Q_{\rm R}: (1_{\rm L}, 2_{\rm R}, 1/3); \qquad \qquad L_{\rm R}: (1_{\rm L}, 2_{\rm R}, -1).$$

The Higgs sector contains a bi-doublet ϕ and two triplets Δ_L and Δ_R with transformation properties

 $\phi: (2_{\mathrm{L}}, 2_{\mathrm{R}}, 0); \qquad \Delta_{\mathrm{L}}: (3_{\mathrm{L}}, 1_{\mathrm{R}}, 2); \qquad \Delta_{\mathrm{R}}: (1_{\mathrm{L}}, 3_{\mathrm{R}}, 2).$

Note that the bi-doublet and the triplets can be expressed by the following 2×2 matrices:

$$\phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix}; \qquad \Delta_{\mathrm{L, R}} = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}.$$

- a) Why does this model not work with only the bi-doublet?
- b) Construct the Lagrange density for the fermion-Higgs interactions \mathscr{L}_{Yukawa} (including all possible gauge singlets).
- c) Use the assumption that after spontaneous symmetry breaking the vacuum is electrically neutral to derive the fermion mass terms in the broken phase.
- d) We leave the quark and lepton sector unchanged, but modify the symmetry-breaking part of the model. In the Higgs sector we still have the bi-doublet ϕ , but instead of the triplets we introduce two scalar doublets $A_{L, R}$ and a fermionic singlet χ with the following transformation properties under SU(2)_L, SU(2)_R and U(1)_{B-L}:

$$A_{
m L}:(2_{
m L},\ 1_{
m R},\ 1); \qquad \qquad A_{
m R}:(1_{
m L},\ 2_{
m R},\ 1); \qquad \qquad \chi:(1_{
m L},\ 1_{
m R},\ 0).$$

Left-right symmetry implies the invariance of the Lagrange density under the following transformations (where Ψ denotes any fermion field):

$$\Psi_{\rm L} \leftrightarrow \Psi_{\rm R} \qquad \qquad A_{\rm L} \leftrightarrow A_{\rm R} \qquad \qquad \phi \leftrightarrow \phi^{\dagger}$$

Construct the Lagrange density \mathscr{L}_{Yukawa} for the fermion masses in this model. (Again, you have to construct singlets under the whole gauge group.)

Problem 27: $e - \overline{\nu}$ scattering and W_R [10 Points]

In the Standard Model, the $SU(2)_L$ gauge fields couple only to left-handed fermions, giving rise to the so-called V - A structure of Fermi theory,

$$\mathcal{L}_{\text{Fermi}} = \frac{G_F}{\sqrt{2}} \,\overline{\nu} \gamma_\mu (1 - \gamma_5) e \,\overline{e} \gamma^\mu (1 - \gamma_5) \nu_5$$

a) Calculate the differential cross section $\frac{d\sigma}{dE}$ for the scattering process $\overline{\nu}e \rightarrow \overline{\nu}e$ in Fermi theory, assuming that the electron is initially at rest and neutrinos are massless. Use the identity

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{16\pi} \frac{\left|\overline{\mathcal{M}}\right|^2}{\left(s - m_c^2\right)^2} \tag{1}$$

to obtain the spin-averaged differential cross section in terms of the final electron energy E, where t denotes the Mandelstam t-variable.

b) If an aditional W_R boson, which couples to right-handed currents, is included, it will induce an interaction of the type V + A. The effective theory can be described by

$$\mathcal{L}_R = \varepsilon \frac{G_F}{\sqrt{2}} \,\overline{\nu} \gamma_\mu (1+\gamma_5) e \,\overline{e} \gamma^\mu (1+\gamma_5) \nu,$$

where ε parametrises the different mass and coupling of the W_R . Note that now *two* diagrams contribute to the amplitude for $\overline{\nu}e \to \overline{\nu}e$, $|\mathcal{M}|^2 = |\mathcal{M}_L + \mathcal{M}_R|^2$. Since the squares of \mathcal{M}_L and \mathcal{M}_R will have the form calculated in a), we only need to worry about the interference term $\mathcal{M}_L \mathcal{M}_R^* + c.c.$. Calculate the part of the cross section that corresponds to the interference of the two contributions and show that it scales with the neutrino mass squared.