Exercises to "Standard Model of Particle Physics II"

Winter 2020/21

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann Sheet 11 - February 3, 2020

Tutor: Cristina Benso e-mail: benso@mpi-hd.mpg.de Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:	Discussion of solutions:
February 10, 2021 - via e-mail, before 14:00	February $10, 2021$ - on zoom

Problem 22: Stückelberg Mechanism [10 Points]

For a gauged abelian symmetry U(1)' (it does not extend to non-abelian symmetries) there exists an interesting mechanism to generate a massive gauge boson, while retaining renormalizability. The method involves a real scalar field σ together with the Z'-boson associated to U(1)'. Consider the Lagrangian

$$\mathscr{L} = -\frac{1}{4}Z'^{\mu\nu}Z'_{\mu\nu} + \frac{1}{2}(M_{Z'}Z'_{\mu} + \partial_{\mu}\sigma)(M_{Z'}Z'^{\mu} + \partial^{\mu}\sigma) + i\overline{\psi}\gamma^{\mu}(\partial_{\mu} - ig'Y'Z'_{\mu})\psi - m\overline{\psi}\psi.$$

The gauge transformations for the Dirac fermion (with U(1)' charge Y') and gauge boson are given by

 $\psi \to e^{-ig'Y'\theta(x)}\psi, \qquad Z'_{\mu} \to Z'_{\mu} - \partial_{\mu}\theta(x).$

- a) Calculate the gauge transformation of the real scalar σ that makes the Lagrangian invariant and show the invariance of the other terms.
- b) Can you fix a gauge to eliminate σ from the theory? Show how it is possible. What happens to the number of degrees of freedom?

Problem 23: Seesaw II [10 Points]

We consider the lepton sector of the Standard Model and expand it by adding a Higgs triplet Δ . The particles considered have the following SU(2)_L × U(1)_Y transformation properties:

$$L_a \sim (2, -1);$$
 $l_{aR} \sim (1, -2);$ $\phi \sim (2, 1);$ $\Delta \sim (3, 2),$

where the fields denote respectively the left-handed lepton doublet, the right-handed lepton singlet, the SM Higgs doublet and the (non-SM) Higgs triplet in the convention that $Q = I_3 + Y/2$. The flavour index is denoted as a. For the triplet use the representation as a 2×2 matrix with the (electric) charge eigenstates

$$\Delta = \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}.$$

The mass terms for the leptons arise from the Yukawa Lagrangian

$$\mathscr{L}_{\mathbf{Y}} = \sum_{a,b} \left[-y_{ab} \overline{l_{a\mathbf{R}}} \phi^{\dagger} L_b + \frac{1}{2} \tilde{y}_{ab} \overline{L_a^c} i \tau_2 \Delta L_b \right] + \text{h.c.}$$

- a) Convince yourself that \mathscr{L}_{Y} is a singlet under $\mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1)_{\mathrm{Y}}$.
- b) The introduction of the triplet changes the Higgs potential to

$$V(\phi, \ \Delta) = a\phi^{\dagger}\phi + \frac{b}{2}\mathrm{Tr}[\Delta^{\dagger}\Delta] + c(\phi^{\dagger}\phi)^{2} + \frac{d}{4}(\mathrm{Tr}[\Delta^{\dagger}\Delta])^{2} + \frac{e-h}{2}\phi^{\dagger}\phi\mathrm{Tr}[\Delta^{\dagger}\Delta] + \frac{f}{4}\mathrm{Tr}[\Delta^{\dagger}\Delta^{\dagger}]\mathrm{Tr}[\Delta\Delta] + h\phi^{\dagger}\Delta^{\dagger}\Delta\phi + (t\phi^{\dagger}\Delta(\mathrm{i}\tau_{2}\phi^{*}) + \mathrm{h.c.}).$$

Use the condition that only neutral components of the Higgs fields can develop non-zero vacuum expectation values (vev's) $\langle \phi^0 \rangle = v$ and $\langle \Delta^0 \rangle = v_{\Delta}/\sqrt{2}$ and find $V(\langle \phi \rangle, \langle \Delta \rangle)$.

- c) Define $t = |t|e^{i\omega}$, $v_{\Delta} = |v_{\Delta}|e^{i\gamma}$ and minimize the potential with respect to v, $|v_{\Delta}|$, and γ . *Hint*: Start with γ .
- d) Show that, under the assumptions $a, b \sim v^2$, and $c, d, e, f, h \sim 1$, together with $|t| \ll v$, the conditions for the minimum are approximately equivalent to

$$v^2 \approx -\frac{a}{2c}$$
 and $|v_\Delta| = \frac{2|t|v^2}{b+(e-h)v^2}$.

- e) What do your findings imply for the masses in the lepton sector?
- f) Assume that $\sqrt{b} = m_{\Delta}$ is very large compared to the electroweak scale v and $|v_{\Delta}|$, and that $t^2 \sim b$, while keeping $c, d, e, f, h \sim 1$. Find the relations between the vev's under these conditions. What does it mean for the lepton masses?
- g) What is the difference between this scenario (the so-called *type-II* seesaw) and the type-I seesaw from **Problem 21**?