Exercises to "Standard Model of Particle Physics II"

Winter 2018/19

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann

Sheet 11

January 9, 2019

Problem 22: Seesaw I [10 Points]

The Higgs mechanism generates Dirac masses for the active neutrinos when right-handed sterile neutrinos are introduced. The following term appears in the Lagrange density:

$$\mathcal{L}_{Dirac} = -\overline{\nu}_{L} M_{D} N_{R} + h.c.$$

where $\nu_{\rm L} = (\nu_{\rm L}^1, \ \nu_{\rm L}^2, \ \nu_{\rm L}^3)^{\rm T}$ is the column vector of the active neutrinos and $N_{\rm R}$ the corresponding vector for the sterile neutrinos. The matrix $M_{\rm D}$ is – in general – a complex 3×3 matrix. The right-handed sterile neutrinos can, furthermore, have a Majorana mass with the Lagrange density

$$\mathscr{L}_{\mathrm{Majorana}} = -\frac{1}{2} \overline{(N_{\mathrm{R}})^{\mathrm{c}}} M_{\mathrm{R}} N_{\mathrm{R}} + \mathrm{h.c.} \,,$$

where $M_{\rm R}$ is a symmetric 3×3 matrix, and $\psi^{\rm c} = \mathcal{C}\overline{\psi}^T$ for a general Dirac spinor ψ and the charge conjugation matrix $\mathcal{C} = i\gamma^2\gamma^0$.

Let $m_{\rm D}$ and $m_{\rm R}$ denote the mass scale of $M_{\rm D}$ and $M_{\rm R}$, respectively. Suppose the entries of $M_{\rm R}$ are much larger than the ones of $M_{\rm D}$ ($m_{\rm R} \gg m_{\rm D}$).

a) Show that it is possible to rewrite the whole mass matrix in the flavour basis in the following way

$$\mathcal{L}_{\text{mass}} \equiv \mathcal{L}_{\text{Dirac}} + \mathcal{L}_{\text{Majorana}} = -\frac{1}{2} \overline{\Psi^{c}} M \Psi + \text{h.c. } o,$$

with

$$\Psi \equiv \begin{pmatrix} (\nu_{\rm L})^{\rm c} \\ N_{\rm R} \end{pmatrix} \quad \text{and} \quad M \equiv \begin{pmatrix} 0 & M_{\rm D} \\ M_{\rm D}^{\rm T} & M_{\rm R} \end{pmatrix}.$$

For the solution prove and use the identity $\overline{\nu_{\rm L}} M_{\rm D} N_{\rm R} = \overline{(N_{\rm R})^{\rm c}} M_{\rm D}^{\rm T} (\nu_{\rm L})^{\rm c}$.

b) Using the (unitary) transformation $\Psi=U\chi$ with $U=\begin{pmatrix} 1 & \rho \\ -\rho^\dagger & 1 \end{pmatrix}$ (change of basis) it is possible to convert the 6×6 matrix M into a block diagonal form, i.e. that it takes on the following form

$$U^{\mathrm{T}}MU \simeq \begin{pmatrix} M_1 & 0\\ 0 & M_2 \end{pmatrix},\tag{1}$$

with symmetric 3×3 matrices M_1 , M_2 . The matrix ρ in the transformation matrix U is assumed to be proportional to the scale $m_{\rm R}^{-1}$ and terms of order $m_{\rm R}^{-2}$ (and smaller) can be neglected in the calculation.

Determine ρ , and M_1 and M_2 from Eq. (1). What is the connection between the fields χ_1 , χ_2 and the original fields ν_L , N_R ? (You may assume that M_R is invertible.)

c) Where does the name "seesaw" come from?

Problem 23: Seesaw II [10 Points]

We consider the lepton sector of the Standard Model and expand it by adding a Higgs triplet Δ . The particles considered have the following $SU(2)_L \otimes U(1)_Y$ transformation properties:

$$L_a \sim (2, -1);$$
 $l_{aR} \sim (1, -2);$ $\phi \sim (2, 1);$ $\Delta \sim (3, 2).$

where the fields denote respectively the left-handed lepton doublet, the right-handed lepton singlet, the SM Higgs doublet and the (non-SM) Higgs triplet in the convention that Q = $I_3 + Y/2$. The flavour index is denoted as a. For the triplet use the representation as a 2×2 matrix with the (electric) charge eigenstates

$$\Delta = \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}.$$

The mass terms for the leptons arise from the Yukawa Lagrangian

$$\mathscr{L}_{Y} = \sum_{a,b} \left[-y_{ab} \overline{l_{aR}} \phi^{\dagger} L_{b} + \frac{1}{2} \tilde{y}_{ab} \overline{L_{a}^{c}} i \tau_{2} \Delta L_{b} \right] + \text{h.c.}$$

- a) Convince yourself that \mathscr{L}_{Y} is a singlet under $SU(2)_{L} \otimes U(1)_{Y}$.
- b) The introduction of the triplet changes the Higgs potential to

$$V(\phi, \ \Delta) = a\phi^{\dagger}\phi + \frac{b}{2}\text{Tr}[\Delta^{\dagger}\Delta] + c(\phi^{\dagger}\phi)^{2} + \frac{d}{4}(\text{Tr}[\Delta^{\dagger}\Delta])^{2} + \frac{e-h}{2}\phi^{\dagger}\phi\text{Tr}[\Delta^{\dagger}\Delta]$$
$$+ \frac{f}{4}\text{Tr}[\Delta^{\dagger}\Delta^{\dagger}]\text{Tr}[\Delta\Delta] + h\phi^{\dagger}\Delta^{\dagger}\Delta\phi + (t\phi^{\dagger}\Delta(i\tau_{2}\phi^{*}) + \text{h.c.}).$$

Use the condition that only neutral components of the Higgs fields can develop non-zero vacuum expectation values (vev's) $\langle \phi^0 \rangle = v$ and $\langle \Delta^0 \rangle = v_{\Delta} / \sqrt{2}$ and find $V(\langle \phi \rangle, \langle \Delta \rangle)$.

- c) Define $t = |t|e^{i\omega}$, $v_{\Delta} = |v_{\Delta}|e^{i\gamma}$ and minimize the potential with respect to v, $|v_{\Delta}|$, and γ . *Hint*: Start with γ .
- d) Show that, under the assumptions $a, b \propto v^2$, and $c, d, e, f, h \propto 1$, together with $|t| \ll v$, the conditions for the minimum are approximately equivalent to

$$v^2 \approx -\frac{a}{2c}$$
 and $|v_{\Delta}| = \frac{2|t|v^2}{b + (e - h)v^2}$.

- e) What do your findings imply for the masses in the lepton sector?
- f) Assume that $\sqrt{b} = m_{\Delta}$ is very large compared to the electroweak scale v and $|v_{\Delta}|$, and that $t^2 \propto b$. Find the relations between the vev's under these conditions. What does it mean for the lepton masses?
- g) What is the difference between this scenario (the so-called type-II seesaw) and the type-I seesaw from **Problem 22**?

Tutor:

Ingolf Bischer

e-mail: bischer@mpi-hd.mpg.de

Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in and discussion of sheet:

January 16, 2019, 15:45, Philosophenweg 12, R106