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Problem 21: The Boltzmann equation / WIMP miracle (2) [15 Points]

Consider a stable particle ψ. In a comoving volume, we know that the number of ψ and ψ̄
changes only through annihilation and inverse annihilation processes. Let χ denote all possible
final states, then we can write:

ψψ̄ ↔ χχ̄

Under certain simplifying assumptions, the Boltzmann equation which rules the evolution of
the ψ-number density nψ can, together with an equation for the entropy s, be written as:

dnψ
dt

= −3Hn− 〈σannv〉(n2 − n2
eq) (1)

ds

dt
= −3Hs (2)

Here t is the time, H is the Hubble parameter, neq and 〈σannb〉 are the WIMP equilibrium
number density and the thermally averaged total annihilation cross-section.

a) It is useful to combine equations (1) and (2) into one differential equation. To this end define
Y ≡ nψ

s
and x ≡ m

T
. Derive the following equation:

dY

dx
= 1

3H
ds

dx
〈σannv〉(Y 2 − Y 2

eq) . (3)

b) According to the Friedmann equations, the Hubble parameter is determined by the mass-
energy density ρ as

H2 = 8π
3M2

Pl
ρ

with the Planck mass MPl = 1.22× 1019 GeV. The energy and entropy densities are related to
the photon temperature as

ρ = π2

30geff(T )T 4

and
s = 2π2

45 heff(T )T 3,

where heff(T ) and geff(T ) are the effective number of relativistic degrees of freedom for the
entropy and energy densities, respectively. Show that in a Friedmann Universe, equation (3)
reads:

dY

dx
= −

(
45

πM2
Pl

)−1/2
g

1/2
∗ m

x2 〈σannv〉(Y 2 − Y 2
eq) (4)

with
g1/2
∗ = heff

g
1/2
eff

(
1 + 1

3
T

heff

dheff

dT

)



Unfortunately, equation (4) can only be solved numerically with the initial condition Y = Yeq
at x ≈ 1 to obtain the present WIMP abundance

Y0 ≈
17 + 3 · ln(m/GeV)
MPl ·m · σ0 · g1/2

∗ (T0)
,

where the effective number of relativistic degrees of freedom today is g∗(T0) ≈ 75.75. Note that
we make use of a crude approximation 〈σannv〉 ≈ σ0 neglecting terms of O (v2) which may only
be used in the non-relativistic limit. The solutions to the Boltzmann equation are shown in
figure 1.

Figure 1: The plot shows the result of equation (4) in terms of Y (x).

c) The entropy density today s0 can be written in terms of nγ, which in turn is given by

nγ = 2ζ(3)
π2 T 3.

In addition, nγ,0 can be related to nb,0 via the baryon to photon ratio η ≡ nb,0
nγ,0

= 6 · 10−10. Find
the value for the dark matter mass m in order to match the observed dark matter to baryon
ratio ρDM,0

ρb,0
≈ 4−6. Assume that the interaction is of the order of the weak scale, σ0 ≈ G2

F ·m2,
with GF = 1.15 · 10−5 GeV−2. Is the value you derive for the mass surprising?



Problem 22: Tremaine-Gunn bound [5 Points]

Assume that neutrinos have a mass, large enough that they are non-relativistic today. This
neutrino gas would not be homogeneous, but clustered around galaxies. Assume that they
dominate the mass of these galaxies (ignore other matter) as if they were the dark matter. We
know the mass M(r) within a given radius r in a galaxy from the velocity v(r) of stars rotating
around it [cf. Problem 19 on sheet 10]. The mass could be due to a few species of heavy neutrinos
or more species of lighter neutrinos. However, the available phase space limits the number of
neutrinos with velocities below the escape velocity from the galaxy (you don’t need to assume
a thermal distribution). These considerations give a lower limit for the mass of neutrinos mν if
they dominate the mass of the galaxy. Assume for simplicity that all neutrinos have the same
mass, their distribution is spherically symmetric and the escape velocity is independent of the
radius r. Furthermore, assume that all states with momenta smaller than the mass times the
escape velocity are populated, with the number of states per unit phase space volume in general
given by

n = g/(2π~)3 ·
∫ ∞

0
f(p)dp (5)

where f(p) is the Fermi-Dirac distribution and g describes the relativistic degrees of freedom
(assume g = 2).

Find a rough estimate for the minimal mν if they dominate the mass of a galaxy (are dark
matter). Give a numerical value if v(r) = 220 km/s at r = 10 kpc.

From other cosmological bounds we can roughly estimate mν < 0.3 eV. Compare this value to
your value for mν , what do you conclude? Can you derive a similar bound for bosons?
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