Exercises to "Standard Model of Particle Physics"

Summer 2013

Prof. Dr. Andre Schöning, Dr. Werner Rodejohann	Sheet 9	24.6.13
---	---------	---------

Exercise 17: Electroweak interference [15 Points]

We haven't calculated a process for a while...

The process $e^{-}(p_1) e^{+}(p_2) \rightarrow \mu^{-}(k_1) \mu^{+}(k_2)$ has two s-channel diagrams, corresponding to photon and Z exchange. Write down both amplitudes (ignore lepton masses) and calculate $d\sigma/d\Omega$. Show in particular that in the center-of-mass system

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \left(A_0 (1 + \cos^2 \theta) + A_1 \cos \theta \right)$$

What was the QED result again?

Exercise 18: Scalar fields [10 Points]

Take the standard Higgs doublet $\phi = (\phi_+, \phi_0)^T$, which has hypercharge +1, i.e. transforms under $SU(2)_W \times U(1)_Y$ like

$$\phi \to \phi' = \exp\left(-ig_Y(+1)\alpha(x)\mathbb{1}\right)\exp\left(-ig_W\sum_{a=1}^3\beta_a(x)T_a\right)\phi,$$

where $T_a = \sigma_a/2$. A doublet with hypercharge -1 can be obtained from ϕ by the transformation $\tilde{\phi} = -i\sigma_2\phi^*$. The most general gauge-invariant potential for ϕ can be written as

$$V = -\mu^2 \phi^{\dagger} \phi + \lambda \phi^{\dagger} \phi \phi^{\dagger} \phi \,.$$

a) Show that the following terms can be reduced to the ones given in V:

$$\tilde{\phi}^\dagger \tilde{\phi}\,, \qquad \tilde{\phi}^\dagger \phi \, \phi^\dagger \tilde{\phi}\,,$$

and also argue why one can not write down an invariant term involving three fields.

b) Assume there was a new scalar Δ which transformed in the adjoint representation of $SU(2)_W$. This triplet can be conveniently written down as a 2×2 matrix $\Delta \equiv \sum_a \Delta_a \sigma_a$, which transforms under $SU(2)_W$:

$$\Delta \to \exp\left(-ig_W \sum_{a=1}^3 \beta_a(x)T_a\right) \Delta \exp\left(-ig_W \sum_{a=1}^3 \beta_a(x)T_a\right)^{\dagger}.$$

From $2 \otimes 2 \otimes 3 = 1 \oplus \ldots$ we know that there is just one gauge invariant cubic coupling of $\phi\phi\Delta$. Show that the following terms are invariant under $SU(2)_W$

$$\phi^{\dagger}\Delta\phi\,,\qquad \phi^{\dagger}\Delta\tilde{\phi}\,,\qquad \tilde{\phi}^{\dagger}\Delta\tilde{\phi}\,,$$

expand the expressions in component fields and determine which hypercharge Δ has to carry to make each term invariant under $SU(2)_W \times U(1)_Y$.

Tutors:

Julian Heeck, email: julian.heeck@mpi-hd.mpg.de He Zhang, email: he.zhang@mpi-hd.mpg.de

Tutorials homepage: http://www.mpi-hd.mpg.de/manitop/StandardModel/exercise.html

Hand-in of sheet:

during lecture on 1.7.

Discussion of sheet:

Thursday, 4.7. 2.15 pm, INF 227 SR 2.402 Friday, 5.7. 2.15 pm, INF 227 SR 1.403