Exercises to "Standard Model of Particle Physics"

Summer 2013

Prof. Dr. Andre Schöning, Dr. Werner Rodejohann

Sheet 8
17.6.13

Exercise 16: Stückelberg mechanism [20 Points]
For a gauged abelian symmetry $U(1)^{\prime}$ (it does not extend to non-abelian symmetries) there exists an interesting mechanism to generate a massive gauge boson, while retaining renormalizability. The method contains a real scalar field σ together with the Z^{\prime}-boson associated to the $U(1)^{\prime}$.
a) Consider the Lagrangian

$$
\mathcal{L}=-\frac{1}{4} Z^{\prime \mu \nu} Z_{\mu \nu}^{\prime}+\frac{1}{2}\left(M_{Z^{\prime}} Z_{\mu}^{\prime}+\partial_{\mu} \sigma\right)\left(M_{Z^{\prime}} Z^{\prime \mu}+\partial^{\mu} \sigma\right)+i \bar{\psi} \gamma^{\mu}\left(\partial_{\mu}-i g^{\prime} Y^{\prime} Z_{\mu}^{\prime}\right) \psi-m \bar{\psi} \psi
$$

The gauge transformations for the Dirac fermion (with $U(1)^{\prime}$ charge Y^{\prime}) and gauge boson are given by

$$
\psi \rightarrow e^{-i g^{\prime} Y^{\prime} \theta(x)} \psi, \quad Z_{\mu}^{\prime} \rightarrow Z_{\mu}^{\prime}-\partial_{\mu} \theta(x)
$$

Calculate the gauge transformation of the real scalar σ that makes the Lagrangian invariant, and show the invariance of the other terms, too. Can you fix a gauge to eliminate σ from the theory? Count degrees of freedom in both gauges.
b) Consider an extension of the SM gauge group $G_{\mathrm{SM}} \equiv S U(3) \times S U(2) \times U(1)_{Y} \rightarrow G_{\mathrm{SM}} \times$ $U(1)^{\prime}$ with Lagrangian

$$
\begin{aligned}
\mathcal{L} \supset & -\frac{1}{4} \hat{B}^{\mu \nu} \hat{B}_{\mu \nu}-\frac{1}{4} \hat{W}_{3}^{\mu \nu} \hat{W}_{3 \mu \nu}+\frac{1}{2} \hat{M}_{Z}^{2}\left(\hat{c}_{W} \hat{W}_{3}^{\mu}-\hat{s}_{W} \hat{B}^{\mu}\right)^{2} \\
& -\frac{1}{4} \hat{Z}^{\prime \mu \nu} \hat{Z}_{\mu \nu}^{\prime}-\frac{\sin \chi}{2} \hat{B}^{\mu \nu} \hat{Z}_{\mu \nu}^{\prime}+\frac{1}{2}\left(\partial_{\mu} \sigma+\hat{M}_{Z^{\prime}} \hat{Z}_{\mu}^{\prime}+\hat{M}_{B} \hat{B}_{\mu}\right)^{2},
\end{aligned}
$$

where σ is charged under both $U(1)^{\prime}$ (with gauge boson \hat{Z}^{\prime}) and $U(1)_{Y}$ (with gauge boson $\left.\hat{B}^{\prime}\right)$. Find again how σ has to transform under $U(1)_{Y} \times U(1)^{\prime}$ for the Lagrangian to be invariant and show that the $\sin \chi$ term is gauge invariant. In the SM , you find the Z boson $Z=\hat{c}_{W} \hat{W}_{3}^{\mu}-\hat{s}_{W} \hat{B}^{\mu}$ and the massless photon $\gamma=\hat{s}_{W} \hat{W}_{3}^{\mu}+\hat{c}_{W} \hat{B}^{\mu}$, but the extra neutral gauge boson \hat{Z}^{\prime} changes these results. To find the gauge boson mass eigenstates, we need to diagonalize the kinetic terms first (if the "kinetic mixing angle" χ is nonzero). To do this, find a (non-unitary) transformation matrix R that transforms ($\hat{B}, \hat{W}_{3}, \hat{Z}^{\prime}$) into $\left(\tilde{B}, \tilde{W}_{3}, \tilde{Z}^{\prime}\right)$ with the properly normalized "diagonal" kinetic terms

$$
\mathcal{L} \supset-\frac{1}{4} \tilde{B}^{\mu \nu} \tilde{B}_{\mu \nu}-\frac{1}{4} \tilde{W}_{3}^{\mu \nu} \tilde{W}_{3 \mu \nu}-\frac{1}{4} \tilde{Z}^{\prime \mu \nu} \tilde{Z}_{\mu \nu}^{\prime}
$$

Hint: $\hat{W}_{3}=\tilde{W}_{3}$.
c) The fields \tilde{B}, \tilde{W}_{3} and \tilde{Z}^{\prime} share a non-diagonal mass matrix. Write it down and show that it has at least one zero eigenvalue, i.e. there is still a massless photon in the model. Calculate the other two masses for the case $\chi=0$ and expand in $\hat{M}_{B} \ll \hat{M}_{Z}<\hat{M}_{Z^{\prime}}$.

Exercise 17: Effects of $Z-Z^{\prime}$ mixing [10 Points]
The general effective Lagrange density after breaking the $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)^{\prime}$ symmetry to $S U(3)_{C} \times U(1)_{\text {EM }}$ can be written as

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{Z^{\prime}}+\mathcal{L}_{\text {mix }}
$$

where the relevant part of the Standard Model Lagrangian is

$$
\mathcal{L}_{\mathrm{SM}}=-\frac{1}{4} \hat{B}_{\mu \nu} \hat{B}^{\mu \nu}-\frac{1}{4} \hat{W}_{\mu \nu}^{a} \hat{W}^{a \mu \nu}+\frac{1}{2} \hat{M}_{Z}^{2} \hat{Z}_{\mu} \hat{Z}^{\mu}-\frac{\hat{e}}{\hat{c}_{W}} j_{B}^{\mu} \hat{B}_{\mu}-\frac{\hat{e}}{\hat{s}_{W}} j_{W}^{a \mu} \hat{W}_{\mu}^{a},
$$

and the hats merely denote that the fields are not mass eigenstates. The Z^{\prime} part reads

$$
\mathcal{L}_{Z^{\prime}}=-\frac{1}{4} \hat{Z}_{\mu \nu}^{\prime} \hat{Z}^{\prime \mu \nu}+\frac{1}{2} \hat{M}_{Z}^{\prime 2} \hat{Z}_{\mu}^{\prime} \hat{Z}^{\prime \mu}-\hat{g}^{\prime} j^{\prime \mu} Z_{\mu}^{\prime}
$$

and the kinetic- and mass-mixing terms can be parameterized as

$$
\mathcal{L}_{\text {mix }}=-\frac{\sin \chi}{2} \hat{Z}^{\prime \mu \nu} \hat{B}_{\mu \nu}+\delta \hat{M}^{2} \hat{Z}_{\mu}^{\prime} \hat{Z}^{\mu}
$$

a) Determine the mass eigenstates Z_{1}^{μ} and Z_{2}^{μ} and determine the couplings of $Z_{1,2}$ to the currents j_{B}, j_{W} and j^{\prime}. Set the kinetic mixing angle χ to zero for simplicity.
b) Since the mass of the physical Z boson changes compared to the SM, the so-called ρ parameter $\rho=M_{W}^{2} / M_{Z}^{2} c_{W}^{2}$ is no longer equal to one. Use the current value $\rho=1.0008_{-0.0007}^{+0.0017}$ to constrain the $Z-Z^{\prime}$ mixing.

Tutors:

Julian Heeck, email: julian.heeck@mpi-hd.mpg.de
He Zhang, email: he.zhang@mpi-hd.mpg.de
Tutorials homepage: http://www.mpi-hd.mpg.de/manitop/StandardModel/exercise.html

Hand-in of sheet:

during lecture on 24.6.

Discussion of sheet:

Thursday, 27.6. 2.15 pm , INF 227 SR 2.402
Friday, 28.6. 2.15 pm, INF 227 SR 1.403

