Exercises to "Standard Model of Particle Physics"

Summer 2013

Prof. Dr. Andre Schöning, Dr. Werner Rodejohann
Sheet 5
27.5.13

Exercise 10: W-polarization [10 Points]

For a W-boson with 4 -momentum $p=(E, \boldsymbol{p})$, moving along the z-axis, the polarization vectors for the helicities $\lambda=0, \pm 1$ can be written as

$$
\begin{gathered}
\epsilon_{\lambda=0}^{\mu}=\frac{1}{m_{W}}(|\boldsymbol{p}|, 0,0, E) \\
\epsilon_{\lambda= \pm 1}^{\mu}=\frac{1}{\sqrt{2}}(0, \mp 1,-i, 0)
\end{gathered}
$$

Check if the "completeness relation"

$$
\sum_{\lambda} \epsilon_{\mu}^{*} \epsilon_{\nu}=-g_{\mu \nu}+\frac{p_{\mu} p_{\nu}}{m_{W}^{2}}
$$

is fulfilled.

Exercise 11: Pion Decay [5 Points]

Calculate the decay width for pion decay $\pi^{-}(p) \rightarrow e^{-}\left(p_{1}\right)+\bar{\nu}_{e}\left(p_{2}\right)$, and derive the ratio of this decay width with the one for $\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}$. Comment on the result.

Exercise 12: S-Matrix [10 Points]

a) Show that from the unitarity of the S-matrix the following condition follows:

$$
T_{f i}-T_{i f}^{*}=i(2 \pi)^{4} \Sigma_{n} \delta\left(P_{f}-P_{n}\right) T_{f n} T_{i n}^{*}
$$

b) for $i=f$, i.e. elastic forward scattering $(\theta=0)$ with 2 particles a and b in the initial state, one can show in scattering theory that:

$$
\operatorname{Im} \mathcal{M}_{i i}=\sqrt{\lambda\left(s, m_{a}^{2}, m_{b}^{2}\right)} \sigma_{\mathrm{tot}}
$$

(this is called the optical theorem). With the partial wave decomposition of a matrix element,

$$
\mathcal{M}=16 \pi \sum_{l=0}^{\infty}(2 l+1) P_{l}(\cos \theta) a_{l}
$$

with P_{l} the Legendre polynomials, θ the scattering angle, and a_{l} the partial waves, show that $\left|\operatorname{Re}\left\{a_{0}\right\}\right| \leq \frac{1}{2}$. Repeat the argument from the lecture that Fermi theory runs into problems at a certain energy scale.

Champions League Exercise:

Calculate the following loop-corrected diagram for the process $\gamma \gamma \rightarrow \gamma \gamma$:

Tutors:

Julian Heeck, email: julian.heeck@mpi-hd.mpg.de
He Zhang, email: he.zhang@mpi-hd.mpg.de
Tutorials homepage: http://www.mpi-hd.mpg.de/manitop/StandardModel/exercise.html

Hand-in of sheet:

during lecture on 3.6.

Discussion of sheet:

Thursday, 6.6. 2.15 pm , INF 227 SR 2.402
Friday, 7.6. 2.15 pm, INF 227 SR 1.403

