Prof. Dr. Andre Schöning, Dr. Werner Rodejohann	Sheet 3	6.5.13
---	---------	--------

Exercise 5: It's a photon! [20 Points]

a) as a start, recall that the action is given as

$$S = \int d^4x \, \mathcal{L}(\phi, \partial_\mu \phi)$$

where the Lagrangian \mathcal{L} depends on some field ϕ and its derivative. By varying the action and setting $\delta S = 0$, derive the Euler-Lagrange equation

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} = \frac{\partial \mathcal{L}}{\partial\phi}$$

b) Using the QED Lagrangian given in the lecture, apply the Euler-Lagrange equation to the photon field A_{μ} and find that

$$\partial^{\mu} F_{\mu\nu} = j_{\nu}$$

Show that this current is conserved.

c) Since Maxwell's equations are unchanged when A_{μ} is replaced with $A_{\mu} + \partial_{\mu}\chi$, where χ is an arbitrary function of x, we can further simplify the result from b). Show that one can always find a χ to enforce the Lorenz condition

$$\partial^{\mu}A_{\mu} = 0$$

so that the Maxwell equations reduce to $\partial^{\mu}\partial_{\mu}A^{\nu} = j^{\nu}$.

- d) Show that one can still make the (gauge) transformation $A_{\mu} \to A'_{\mu} = A_{\mu} + \partial_{\mu}\Lambda$, as long as $\partial^{\mu}\partial_{\mu}\Lambda = \Box\Lambda = 0$.
- e) A free photon is described by $A^{\mu} = \epsilon^{\mu}(q)e^{-iqx}$. Using c) and d), show that the polarization vector ϵ^{μ} has only two independent entries. In particular, the zeroth component of ϵ_{μ} can be set to zero. Show further that the replacement

$$\epsilon_{\mu} \to \epsilon'_{\mu} = \epsilon_{\mu} + aq_{\mu}$$

with constant a, leaves physics unchanged.

f) a poor men's definition of a propagator is that it is the inverse of the equation of motion in momentum space. So, for the equation of motion from b), $\partial^{\mu}\partial_{\mu}A^{\nu} = \Box A^{\nu} = j^{\nu}$, we can write $g^{\rho\nu}\Box A_{\rho} = j^{\nu}$ and can get the propagator $X_{\nu\mu}$ from the condition

$$-g^{\rho\nu}q^2 X_{\nu\mu} = \delta^{\rho}_{\mu}$$

Write $X_{\nu\mu}$ as a linear combination of $g_{\nu\mu}$ and $q_{\nu}q_{\mu}$ and derive the propagator. If we wouldn't have put in the Lorenz condition, what would have happened?

g) actually, the most general possible equation of motion goes like

$$\left(g^{\rho\nu}\Box - (1 - \frac{1}{\xi})\partial^{\rho}\partial^{\nu}\right)A_{\rho} = j^{\nu}$$

Derive the propagator. Comment on the term proportional to ξ .

h) Massive vector bosons can be described by replacing \Box with $\Box+M^2,$ thus

$$\left(g^{\rho\nu}(\Box + M^2) - \partial^{\rho}\partial^{\nu}\right)A_{\rho} = j^{\nu}$$

Derive the propagator.

Exercise 6: Moller scattering [10 Points]

Consider $e^{-}(p_1) + e^{-}(p_2) \rightarrow e^{-}(p_3) + e^{-}(p_4)$ and evaluate the spin-averaged matrix element $|\overline{\mathcal{M}}|^2$. What are the crossed processes?

Tutors:

Julian Heeck, email: julian.heeck@mpi-hd.mpg.de He Zhang, email: he.zhang@mpi-hd.mpg.de

Tutorials homepage: http://www.mpi-hd.mpg.de/manitop/StandardModel/exercise.html

Hand-in of sheet:

during lecture on 13.5.

Discussion of sheet:

Thursday, 23.05. 2.15 pm, INF 227 SR 2.402 Friday, 17.05. 2.15 pm, INF 227 SR 1.403