# Exercises to "Standard Model of Particle Physics" 

Summer 2013

Prof. Dr. Andre Schöning, Dr. Werner Rodejohann
Sheet 3
6.5.13

Exercise 5: It's a photon! [20 Points]
a) as a start, recall that the action is given as

$$
S=\int d^{4} x \mathcal{L}\left(\phi, \partial_{\mu} \phi\right)
$$

where the Lagrangian $\mathcal{L}$ depends on some field $\phi$ and its derivative. By varying the action and setting $\delta S=0$, derive the Euler-Lagrange equation

$$
\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}=\frac{\partial \mathcal{L}}{\partial \phi}
$$

b) Using the QED Lagrangian given in the lecture, apply the Euler-Lagrange equation to the photon field $A_{\mu}$ and find that

$$
\partial^{\mu} F_{\mu \nu}=j_{\nu}
$$

Show that this current is conserved.
c) Since Maxwell's equations are unchanged when $A_{\mu}$ is replaced with $A_{\mu}+\partial_{\mu} \chi$, where $\chi$ is an arbitrary function of $x$, we can further simplify the result from b ). Show that one can always find a $\chi$ to enforce the Lorenz condition

$$
\partial^{\mu} A_{\mu}=0
$$

so that the Maxwell equations reduce to $\partial^{\mu} \partial_{\mu} A^{\nu}=j^{\nu}$.
d) Show that one can still make the (gauge) transformation $A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}+\partial_{\mu} \Lambda$, as long as $\partial^{\mu} \partial_{\mu} \Lambda=\square \Lambda=0$.
e) A free photon is described by $A^{\mu}=\epsilon^{\mu}(q) e^{-i q x}$. Using c) and d), show that the polarization vector $\epsilon^{\mu}$ has only two independent entries. In particular, the zeroth component of $\epsilon_{\mu}$ can be set to zero. Show further that the replacement

$$
\epsilon_{\mu} \rightarrow \epsilon_{\mu}^{\prime}=\epsilon_{\mu}+a q_{\mu}
$$

with constant $a$, leaves physics unchanged.
f) a poor men's definition of a propagator is that it is the inverse of the equation of motion in momentum space. So, for the equation of motion from b), $\partial^{\mu} \partial_{\mu} A^{\nu}=\square A^{\nu}=$ $j^{\nu}$, we can write $g^{\rho \nu} \square A_{\rho}=j^{\nu}$ and can get the propagator $X_{\nu \mu}$ from the condition

$$
-g^{\rho \nu} q^{2} X_{\nu \mu}=\delta_{\mu}^{\rho}
$$

Write $X_{\nu \mu}$ as a linear combination of $g_{\nu \mu}$ and $q_{\nu} q_{\mu}$ and derive the propagator. If we wouldn't have put in the Lorenz condition, what would have happened?
g) actually, the most general possible equation of motion goes like

$$
\left(g^{\rho \nu} \square-\left(1-\frac{1}{\xi}\right) \partial^{\rho} \partial^{\nu}\right) A_{\rho}=j^{\nu}
$$

Derive the propagator. Comment on the term proportional to $\xi$.
h) Massive vector bosons can be described by replacing $\square$ with $\square+M^{2}$, thus

$$
\left(g^{\rho \nu}\left(\square+M^{2}\right)-\partial^{\rho} \partial^{\nu}\right) A_{\rho}=j^{\nu}
$$

Derive the propagator.

Exercise 6: Moller scattering [10 Points]
Consider $e^{-}\left(p_{1}\right)+e^{-}\left(p_{2}\right) \rightarrow e^{-}\left(p_{3}\right)+e^{-}\left(p_{4}\right)$ and evaluate the spin-averaged matrix element $|\overline{\mathcal{M}}|^{2}$. What are the crossed processes?

## Tutors:

Julian Heeck, email: julian.heeck@mpi-hd.mpg.de
He Zhang, email: he.zhang@mpi-hd.mpg.de
Tutorials homepage: http://www.mpi-hd.mpg.de/manitop/StandardModel/exercise.html
Hand-in of sheet:
during lecture on 13.5.
Discussion of sheet:
Thursday, 23.05. 2.15 pm , INF 227 SR 2.402
Friday, 17.05. 2.15 pm, INF 227 SR 1.403

