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Prof. Dr. Andre Schöning, Dr. W. Rodejohann Sheet 2 29.04.13

Exercise 3: Space phase [20 Points]

a) Show that ∫
d4p δ(p2 − m2) θ(E) =

∫
d3p

1

2E
,

and therefore that the r.h.s. is Lorentz-invariant.

b) Show that for the 2-to-2 scattering a + b → 1 + 2 in the center-of-mass system the
following relation for the phase space holds:
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c) Consider an unpolarized 3-body decay p → p1 + p2 + p3, e.g. β-decay of a muon:
µ− → e−ν̄eνµ. Show that when mµ ≫ me,ν the phase space in the rest system of the
decaying particle is
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Exercise 4: Dirac equation stuff [10 Points]

Let us recall some properties of the Dirac equation:

a) Show that Λ± = (±/p + m)/(2m), when acting on a general solution of the Dirac
equation, are projection operators for positive and negative energy states.

b) Prove the Gordon decomposition(s)

ūfγ
µui =

1

2m
ūf [(pf + pi)

µ + iσµν(pf − pi)ν ] ui

0 = ūf [(pf − pi)
µ + iσµν(pf + pi)ν ] ui

with σµν = i
2
[γµ, γν ].



c) if we deal (instead of fundamental fermions) with extended objects like hadrons, the
electromagnetic current is no longer ūγµu, but rather ū(p′)Γµu(p), with

Γµ = A(q2)qµ + B(q2)P µ + C(q2)γµ + D(q2)iσµνqν + E(q2)iσµνPν

where q = p′−p and P = p′+p. Use the Gordon decompositions and the conservation
of the current to show that only two of the five functions in Γµ are independent, and
that one can write instead

Γµ = F1(q
2)γµ + F2(q

2)iσµνqν .
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