Exercises to "Standard Model of Particle Physics"

Summer 2013

Prof. Dr. Andre Schöning, Dr. Werner Rodejohann

FINAL SHEET!!

Exercise 20: Z-decay [15 Points]

The Lagrangian for the coupling of a fermion pair f with the Z-boson is

$$
\mathcal{L}=\frac{g}{2 c_{W}} \bar{f} \gamma^{\mu}\left(v_{f}-a_{f} \gamma_{5}\right) f Z_{\mu}
$$

For neutrinos, we have $v_{\nu}=a_{\nu}=\frac{1}{2}$.
a) Calculate the decay width for $Z \rightarrow \bar{\nu} \nu$, keep a possible neutrino mass in the expression.
b) Neutrinos could be Majorana particles, which obey the relation $\nu^{c}=\nu$. Here the superscript c denotes charge conjugation,

$$
\nu^{c}=C(\bar{\nu})^{T},
$$

with $C=i \gamma_{2} \gamma_{0}$. Show the following properties

$$
\begin{gathered}
-C=C^{T}=C^{-1}=C^{*}=C^{\dagger}, \\
C^{-1} \gamma_{\mu} C=-\gamma_{\mu}^{T}, \quad C^{-1} \gamma_{5} C=\gamma_{5}^{T}, \\
\overline{\psi^{c}}=-\psi^{T} C^{-1}, \quad\left(\psi_{L}\right)^{c}=\left(\psi^{c}\right)_{R} .
\end{gathered}
$$

c) Show with the above results that for Majorana neutrinos the vector current $\bar{\nu} \gamma_{\mu} \nu$ vanishes. What about $\bar{\nu} \gamma_{\mu} \gamma_{5} \nu, \bar{\nu} \gamma_{5} \nu$ and $\bar{\nu}\left[\gamma_{\mu}, \gamma_{\nu}\right] \nu$?
d) Using c), calculate the decay width $Z \rightarrow \nu \nu$ (now identical particles!) for Majorana neutrinos and compare with the result from a).

Exercise 21: Quark Flavors [10 Points]

The quark part of the QCD Lagrangian is

$$
\mathcal{L}_{Q}=\bar{q}_{\alpha}^{A}(x)\left(i \not D-m_{A}\right) q_{\alpha}^{A}(x) .
$$

One sums over the flavor index A and the Color index α. Consider the global transformations

$$
\begin{aligned}
& q_{\alpha}^{A}(x) \rightarrow q_{\alpha}^{\prime A}(x)=\left(e^{-i \theta^{A} T^{A}}\right)_{A B} q_{\alpha}^{B}(x) \\
& q_{\alpha}^{A}(x) \rightarrow q_{\alpha}^{\prime A}(x)=\left(e^{-i \theta^{A} T^{A} \gamma_{5}}\right)_{A B} q_{\alpha}^{B}(x)
\end{aligned}
$$

The T^{A} are generators of the (flavour-) $S U(N)$. When is \mathcal{L}_{Q} invariant under these transformations and what are the conserved currents?

Exercise 08/15: FINAL EXERCISE!! [-100 Points]

Consider the following relation of charged lepton masses:

$$
Q=\frac{m_{e}+m_{\mu}+m_{\tau}}{\left(\sqrt{m_{e}}+\sqrt{m_{\mu}}+\sqrt{m_{\tau}}\right)^{2}} .
$$

What is in general the smallest and largest possible value of Q ? Calculate the value of Q with the charged lepton masses from the Particle Data Group. What's going on?

Tutors:

Julian Heeck, email: julian.heeck@mpi-hd.mpg.de
He Zhang, email: he.zhang@mpi-hd.mpg.de
Tutorials homepage: http://www.mpi-hd.mpg.de/manitop/StandardModel/exercise.html

Hand-in of sheet:

during lecture on 8.7.

Discussion of sheet:

Thursday, 11.7. 2.15 pm , INF 227 SR 2.402
Friday, 12.7. 2.15 pm , INF 227 SR 1.403

