Prof. Dr. A. Schöning, Dr. W. Rodejohann	Sheet 1	22.04.13
--	---------	----------

Exercise 1: "Natural Units" [5 Points]

This is to recall the use of $\hbar = 1, c = 1$, etc.

- a) Find the connection of energy (GeV) with time (s), length (cm) and gram (g). Express millibarn in GeV⁻² (1 barn = 10^{-24} cm²).
- b) One can also set the Boltzmann constant to one: $k_{\rm B} = 1$. Find the connection between temperature (K) and energy (MeV) and between temperature (K) and time (s).
- c) The Planck mass $M_{\rm Pl}$ is given as $G_{\rm N} = 1/M_{\rm Pl}^2$, where $G_{\rm N}$ is Newton's constant. Evaluate the Planck time and Planck length. Express the fundamental parameters c und \hbar in terms of the Planck units.

Exercise 2: 2-to-2 scattering [15 Points]

Consider a 2-to-2 scattering process $1 + 2 \rightarrow 3 + 4$.

- a) Calculate in the center-of-mass system the energies and momenta of the individual particles, and give their asymptotic $(s \gg m_i^2)$ behavior.
- b) Show that the scattering angle θ in the center-of-mass system is given by

$$\cos \theta = \frac{s(t-u) + (m_1^2 - m_2^2)(m_3^2 - m_4^2)}{\sqrt{\lambda(s, m_1^2, m_2^2)\,\lambda(s, m_3^2, m_4^2)}}$$

- c) Calculate in the lab system the energies and momenta of the individual particles.
- d) Calculate the scattering angle θ in the lab system.

Bonus Exercise: Kinematics [10 Points]

- a) Show that the decay $e^- \rightarrow e^- \gamma$ is kinematically forbidden.
- b) In Grand Unified Theories the proton can decay into e^+ and π^0 . Show that this decay is kinematically allowed.
- c) Consider the process $pp \rightarrow ppp\bar{p}$, i.e. proton-proton collision with production of 4 protons. Calculate the threshold energy in the center-of-mass system, and the corresponding energy in the lab system.

d) A photon γ ($k^2 = 0$) with 4-momentum $k^{\mu} = (E, E, 0, 0)$ scatters with an electron at rest. After the process the photon has 4-momentum $k^{\mu} = (E', E' \cos \theta, E' \sin \theta, 0)$. Show that

$$E' = \frac{E}{1 + \frac{E}{m_e} \left(1 - \cos\theta\right)}$$

Tutors:

Julian Heeck, email: julian.heeck@mpi-hd.mpg.de He Zhang, email: he.zhang@mpi-hd.mpg.de

Tutorials homepage: http://www.mpi-hd.mpg.de/manitop/StandardModel/exercise.html

Hand-in of sheet:

during lecture on 29.4.

Discussion of sheet:

Thursday, 02.05. 2.15 pm, INF 227 SR 2.402 Friday, 03.05. 2.15 pm, INF 227 SR 1.403 (?)