Introduction to Neutrino (Oscillation) Physics

Standard Model of Particle Physics Rodejohann/Schoening 16/07/12

Literature

- ArXiv:
 - Bilenky, Giunti, Grimus: Phenomenology of Neutrino Oscillations, hep-ph/9812360
 - Akhmedov: *Neutrino Physics*, hep-ph/0001264
 - Grimus: Neutrino Physics Theory, hep-ph/0307149
- Textbooks:
 - Fukugita, Yanagida: Physics of Neutrinos and Applications to Astrophysics
 - Kayser: The Physics of Massive Neutrinos
 - Giunti, Kim: Fundamentals of Neutrino Physics and Astrophysics
 - Schmitz: Neutrinophysik

I Basics

- **I1)** Introduction
- 12) History of the neutrino
- 13) Fermion mixing, neutrinos and the Standard Model

II Neutrino Oscillations

- **II1)** The PMNS matrix
- II2) Neutrino oscillations in vacuum
- **II3)** Results and their interpretation what have we learned?
- II4) Prospects what do we want to know?

I Basics

I1) Introduction

- 12) History of the neutrino
- 13) Fermion mixing, neutrinos and the Standard Model

11) Introduction

Standard Model of Elementary Particle Physics: $SU(3)_C \times SU(2)_L \times U(1)_Y$

Species	#	\sum
Quarks	10	10
Leptons	3	13
Charge	3	16
Higgs	2	18

18 free parameters...

- + Dark Matter
- + Gravitation
- + Dark Energy
- + Baryon Asymmetry

Standard Model of Elementary Particle Physics: $SU(3)_C \times SU(2)_L \times U(1)_Y$

Species	#	\sum
Quarks	10	10
Leptons	3	13
Charge	3	16
Higgs	2	18

+ Neutrino Mass m_{ν}

Standard Model^{*} of Particle Physics add neutrino mass matrix m_{ν} (and a new energy scale?)

Species	#	\sum
Quarks	10	10
Leptons	3	13
Charge	3	16
Higgs	2	18

Standard Model^{*} of Particle Physics add neutrino mass matrix m_{ν} (and a new energy scale?)

Species	#	\sum		Species	#	\sum
Quarks	10	10		Quarks	10	10
Leptons	3	13	\longrightarrow	Leptons	$12 \ (10)$	22~(20)
Charge	3	16		Charge	3	25~(23)
Higgs	2	18		Higgs	2	27~(25)

Two roads towards more understanding: Higgs and Flavor

General Remarks

- Neutrinos interact weakly: can probe things not testable by other means
 - solar interior
 - geo-neutrinos
 - cosmic rays
- Neutrinos have no mass in SM
 - probe scales $m_{
 u} \propto 1/\Lambda$
 - happens in GUTs
 - connected to new concepts, e.g. Lepton Number Violation

 \Rightarrow particle and source physics

I Basics

I1) Introduction

- 12) History of the neutrino
- 13) Fermion mixing, neutrinos and the Standard Model

I2) History

1926 problem in spectrum of β -decay

1930 Pauli postulates "neutron"

My Max . Pholotogram of Dec 0393 Absobrite/15.12.5 M

Örfener Brief an die Gruope der Radicaktiven bei der Geuvereins-Tagung zu Tübingen.

Absobrigt

Physikelisches Institut der Eidg. Technischen Hochschule Zurich

Zirich, 4. Des. 1930 Dioriestrance

Liebe Radioaktive Damen und Herren,

Wie der Veberbringer dieser Zeilen, den ich huldvollet ansuhören bitte, Ihnen des näharen auseinendersetten wird, bin ich angesichts der "falschen" Statistik der N- und Li-6 Kerne, sowie des kontinuierlichen bete-Spektrums suf einen versweifelten Auswer verfallen um den "Wecheelsats" (1) der Statistik und den Energienats su retten. Mämlich die Mäglichkeit, as könnten elektrisch neutrale Tellohen, die ich Neutronen nennen will, in den Lernen existieren, Welche dem Spin 1/2 heben und das Ausschließsungsprinzip befolgen und ale von Lichtquanten museerden noch dadurch unterscheiden, dass sie might wit Lichtgeschwindigkeit laufen. Die Masse der Neutronen figste von dersalben Grossenordnung wie die Elektronenense sein und jedmfalls nicht grösser als 0.01 Protonennassa- Das kontinuierliche bein- Spektrum würe dann verständlich unter der Annahme, dass beim bete-Zerfall ait des blektron jeweils noch ein Meutron emittiert wird, derart, dass die Sume der Evergien von Mestron und Michtron konstant ist.

1932 Fermi theory of β -decay

1956 discovery of $\bar{\nu}_e$ by Cowan and Reines (NP 1985)

1957 Pontecorvo suggests neutrino oscillations

1958 helicity $h(\nu_e) = -1$ by Goldhaber $\Rightarrow V - A$

1962 discovery of ν_{μ} by Lederman, Steinberger, Schwartz (NP 1988)

- 1970 first discovery of solar neutrinos by Ray Davis (NP 2002); solar neutrino problem
- 1987 discovery of neutrinos from SN 1987A (Koshiba, NP 2002)
- 1991 $N_{\nu} = 3$ from invisible Z width
- 1998 SuperKamiokande shows that atmospheric neutrinos oscillate

2000 discovery of u_{τ}

2002 SNO solves solar neutrino problem

2010 the third mixing angle

I Basics

I1) Introduction

- 12) History of the neutrino
- **I3)** Fermion mixing, neutrinos and the Standard Model

Mass Matrices

3 generations of quarks

$$L_1' = \begin{pmatrix} u' \\ d' \end{pmatrix}_L, \quad L_2' = \begin{pmatrix} c' \\ s' \end{pmatrix}_L, \quad L_3' = \begin{pmatrix} t' \\ b' \end{pmatrix}_L$$

$$u_R'\,,\ c_R'\,,\ t_R'\equiv u_{i,R}' \ \text{ and } \ d_R'\,,\ s_R'\,,\ b_R'\equiv d_{i,R}'$$

gives mass term

$$-\mathcal{L}_{Y} = \sum_{i,j} \overline{L'_{i}} \left[g_{ij}^{(d)} \Phi d'_{j,R} + g_{ij}^{(u)} \tilde{\Phi} u'_{j,R} \right]$$

$$\stackrel{\text{EWSB}}{\longrightarrow} \sum_{i,j} \frac{v}{\sqrt{2}} g_{ij}^{(d)} \overline{d'_{i,L}} d'_{j,R} + \frac{v}{\sqrt{2}} g_{ij}^{(u)} \overline{u'_{i,L}} u'_{j,R}$$

$$= \overline{d'_{L}} M^{(d)} d'_{R} + \overline{u'_{L}} M^{(u)} u'_{R}$$

arbitrary complex 3×3 matrices in "flavor (interaction, weak) basis"

Diagonalization

$$U_d^{\dagger} M^{(d)} V_d = D^{(d)} = \text{diag}(m_d, m_s, m_b)$$
$$U_u^{\dagger} M^{(u)} V_u = D^{(u)} = \text{diag}(m_u, m_c, m_t)$$

with unitary matrices $U_{u,d}U_{u,d}^{\dagger} = U_{u,d}^{\dagger}U_{u,d} = V_{u,d}V_{u,d}^{\dagger} = V_{u,d}^{\dagger}V_{u,d} = 1$ in Lagrangian:

$$-\mathcal{L}_{Y} = \frac{\overline{d'_{L}} M^{(d)} d'_{R} + \overline{u'_{L}} M^{(u)} u'_{R}}{\overline{d_{L}} U_{d}} \underbrace{U_{d}^{\dagger} M^{(d)} V_{d}}_{D^{(d)}} \underbrace{V_{d}^{\dagger} d'_{R}}_{d_{R}} + \underbrace{\overline{u'_{L}} U_{u}}_{\overline{u_{L}}} \underbrace{U_{u}^{\dagger} M^{(u)} V_{u}}_{D^{(u)}} \underbrace{V_{u}^{\dagger} u'_{R}}_{u_{R}}$$
physical (mass, propagation) states $u_{L} = \begin{pmatrix} u \\ c \\ t \end{pmatrix}_{L}$

in interaction terms:

$$-\mathcal{L}_{CC} = \frac{\frac{g}{\sqrt{2}} W_{\mu}^{+} \overline{u'_{L}} \gamma^{\mu} d'_{L}}{\frac{g}{\sqrt{2}} W_{\mu}^{+}} \underbrace{\overline{u'_{L}} U_{u}}_{\overline{u_{L}}} \gamma^{\mu} \underbrace{U_{u}^{\dagger} U_{d}}_{V} \underbrace{U_{d}^{\dagger} d'_{L}}_{V}}_{V \qquad \overline{d_{L}}}$$

Cabibbo-Kobayashi-Maskawa (CKM) matrix survives:

 $V = U_u^{\dagger} U_d$

Structure in Wolfenstein-parametrization:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A \lambda^3 (\rho - i \eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A \lambda^2 \\ A \lambda^3 (1 - \rho - i \eta) & -A \lambda^2 & 1 \end{pmatrix}$$

with $\lambda = \sin \theta_C = 0.2253 \pm 0.0007$, $A = 0.808^{+0.022}_{-0.015}$,
 $\overline{\rho} = (1 - \frac{\lambda^2}{2}) \rho = 0.132^{+0.022}_{-0.014}$, $\overline{\eta} = 0.341 \pm 0.013$

Lesson to learn:

 $|V| = \begin{pmatrix} 0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347^{+0.00016}_{-0.00012} \\ 0.2252 \pm 0.0007 & 0.97345^{+0.00015}_{-0.00016} & 0.0410^{+0.0011}_{-0.0007} \\ 0.00862^{+0.00026}_{-0.00020} & 0.0403^{+0.0011}_{-0.0007} & 0.999152^{+0.000030}_{-0.00045} \end{pmatrix}$

small mixing in the quark sector

related to hierarchy of masses?

$$M = \begin{pmatrix} 0 & a \\ a & b \end{pmatrix} = U D U^T \text{ with } U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

where $D = \operatorname{diag}(m_1, m_2)$

from 11-entry one gets

$$\tan \theta = \sqrt{\frac{m_1}{m_2}}$$

compare with $\sqrt{m_d/m_s} \simeq 0.22$ and $\tan \theta_C \simeq 0.23$

Number of parameters in V for N families:complex $N \times N$ $2N^2$ $2N^2$ unitarity $-N^2$ N^2 rephase u_i , d_i -(2N-1) $(N-1)^2$

a real matrix would have $\frac{1}{2}N(N-1)$ rotations around ij-axes

in total:

families	angles	phases
2	1	0
3	3	1
4	6	3
N	$\frac{1}{2}N\left(N-1\right)$	$\frac{1}{2}\left(N-2\right)\left(N-1\right)$

Masses in the SM:

$$-\mathcal{L}_Y = g_e \,\overline{L} \,\Phi \,e_R + g_\nu \,\overline{L} \,\tilde{\Phi} \,\nu_R + h.c.$$

$$L = \begin{pmatrix} \nu_e \\ e \end{pmatrix}_L \text{ and } \tilde{\Phi} = i\tau_2 \Phi^* = i\tau_2 \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}^* = \begin{pmatrix} \phi^0 \\ -\phi^+ \end{pmatrix}^*$$

after EWSB: $\langle \Phi \rangle \to (0, v/\sqrt{2})^T$ and $\langle \tilde{\Phi} \rangle \to (v/\sqrt{2}, 0)^T$

$$-\mathcal{L}_Y = g_e \frac{v}{\sqrt{2}} \overline{e_L} e_R + g_\nu \frac{v}{\sqrt{2}} \overline{\nu_L} \nu_R + h.c. \equiv m_e \overline{e_L} e_R + m_\nu \overline{\nu_L} \nu_R + h.c.$$

 \Leftrightarrow in a renormalizable, lepton number conserving model with Higgs doublets the absence of ν_R means absence of m_{ν}

Lepton Masses

$$-\mathcal{L}_{Y} = \overline{e_{L}^{\prime}} M^{(\ell)} e_{R}^{\prime}$$

$$= \underbrace{\overline{e_{L}^{\prime}} U_{\ell}}_{\overline{e_{L}}} \underbrace{U_{\ell}^{\dagger} M^{(\ell)} V_{\ell}}_{D^{(\ell)}} \underbrace{V_{\ell}^{\dagger} e_{R}^{\prime}}_{e_{R}}$$

and in charged current term:

$$-\mathcal{L}_{CC} = \frac{\frac{g}{\sqrt{2}} W_{\mu}^{+} \overline{e'_{L}} \gamma^{\mu} \nu'_{L}}{\frac{g}{\sqrt{2}} W_{\mu}^{+}} \underbrace{\overline{e'_{L}} U_{\ell}}_{\overline{e_{L}}} \gamma^{\mu} \underbrace{U_{\ell}^{\dagger} U_{\nu}}_{U} \underbrace{U_{\nu}^{\dagger} \nu'_{L}}_{U}}_{U \quad \nu_{L}}$$

Rotation of ν_L is arbitrary in absence of m_{ν} : choose $U_{\nu} = U_{\ell}$

⇒ Pontecorvo-Maki-Nakagawa-Saki (PMNS) matrix

U = 1 for massless neutrinos!!

 \Rightarrow individual lepton numbers L_e , L_{μ} , L_{τ} are conserved

II Neutrino Oscillations

- II1) The PMNS matrix
- II2) Neutrino oscillations in vacuum
- **II3)** Results and their interpretation what have we learned?
- II4) Prospects what do we want to know?

II1) The PMNS matrix

Neutrinos have mass, so:

$$-\mathcal{L}_{\rm CC} = \frac{g}{\sqrt{2}} \overline{\ell_L} \gamma^{\mu} U \nu_L W_{\mu}^{-} \text{ with } U = U_{\ell}^{\dagger} U_{\nu}$$

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$\nu_{\alpha} = U_{\alpha i}^* \, \nu_i$$

connects flavor states ν_{α} ($\alpha = e, \mu, \tau$) to mass states ν_i (i = 1, 2, 3)

Number of parameters in U for N families:

complex
$$N \times N$$
 $2N^2$ $2N^2$ unitarity $-N^2$ N^2 rephase ν_i , ℓ_i $-(2N-1)$ $(N-1)^2$

a real matrix would have $\frac{1}{2}N(N-1)$ rotations around ij-axes

in total:

families	angles	phases
2	1	0
3	3	1
4	6	3
N	$\frac{1}{2}N\left(N-1\right)$	$\frac{1}{2}\left(N-2\right)\left(N-1\right)$

this assumes $\bar{\nu}\nu$ mass term, what if $\nu^T\nu$?

Number of parameters in U for N families:

a real matrix would have $\frac{1}{2}N(N-1)$ rotations around ij-axes

ID	+	
	lola	_

families	angles	phases	extra phases
2	1	1	1
3	3	3	2
4	6	6	3
N	$\frac{1}{2}N\left(N-1\right)$	$\frac{1}{2} N \left(N - 1 \right)$	N-1
Extra $N-1$ ''Majorana phases'' because of mass term $ u^T$ i			
(absent for Dirac neutrinos)			

Majorana Phases

- connected to Majorana nature, hence to Lepton Number Violation
- I can always write: $U = \tilde{U}P$, where all Majorana phases are in $P = \text{diag}(1, e^{i\phi_1}, e^{i\phi_2}, e^{i\phi_3}, \ldots)$:
- 2 families:

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

• 3 families: $U = R_{23} \tilde{R}_{13} R_{12} P$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P$$

$$= \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{-i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{-i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{-i\delta} & c_{23} c_{13} \end{pmatrix} P$$

with
$$P = \text{diag}(1, e^{i\alpha}, e^{i\beta})$$

Dirac vs. Majorana neutrinos See next term: Standard Model II (Prof. Lindner)

II Neutrino Oscillations

- **II1)** The PMNS matrix
- II2) Neutrino oscillations in vacuum
- **II3)** Results and their interpretation what have we learned?
- II4) Prospects what do we want to know?

II2) Neutrino Oscillations in Vacuum

Neutrino produced with charged lepton α is flavor state

$$|\nu(0)\rangle = |\nu_{\alpha}\rangle = U_{\alpha j}^* |\nu_j\rangle$$

evolves with time as

$$|\nu(t)\rangle = U_{\alpha j}^* e^{-i E_j t} |\nu_j\rangle$$

amplitude to find state $|\nu_{\beta}\rangle = U_{\beta i}^* |\nu_i\rangle$:

$$\mathcal{A}(\nu_{\alpha} \to \nu_{\beta}, t) = \langle \nu_{\beta} | \nu(t) \rangle = U_{\beta i} U_{\alpha j}^{*} e^{-i E_{j} t} \underbrace{\langle \nu_{i} | \nu_{j} \rangle}_{\delta_{ij}}$$
$$= U_{\alpha i}^{*} U_{\beta i} e^{-i E_{i} t}$$

Probability:

$$P(\nu_{\alpha} \to \nu_{\beta}, t) \equiv P_{\alpha\beta} = |\mathcal{A}(\nu_{\alpha} \to \nu_{\beta}, t)|^{2}$$
$$= \sum_{ij} \underbrace{U_{\alpha i}^{*} U_{\beta i} U_{\beta j}^{*} U_{\alpha j}}_{\mathcal{J}_{ij}^{\alpha\beta}} \underbrace{e^{-i(E_{i} - E_{j})t}}_{e^{-i\Delta_{ij}}}$$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j>i} \operatorname{Re}\{\mathcal{J}_{ij}^{\alpha\beta}\} \sin^2 \frac{\Delta_{ij}}{2} + 2 \sum_{j>i} \operatorname{Im}\{\mathcal{J}_{ij}^{\alpha\beta}\} \sin \Delta_{ij}$$

= . . . =

with phase

$$\frac{1}{2}\Delta_{ij} = \frac{1}{2} \left(E_i - E_j \right) t \simeq \frac{1}{2} \left(\sqrt{p_i^2 + m_i^2} - \sqrt{p_j^2 + m_j^2} \right) L$$
$$\simeq \frac{1}{2} \left(p_i \left(1 + \frac{m_i^2}{2p_i^2} \right) - p_j \left(1 + \frac{m_j^2}{2p_j^2} \right) \right) L \simeq \frac{m_i^2 - m_j^2}{2E} L$$
$$\frac{1}{2}\Delta_{ij} = \frac{m_i^2 - m_j^2}{4E} L \simeq 1.27 \left(\frac{\Delta m_{ij}^2}{eV^2} \right) \left(\frac{L}{km} \right) \left(\frac{\text{GeV}}{E} \right)$$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j>i} \operatorname{Re}\{\mathcal{J}_{ij}^{\alpha\beta}\} \sin^2 \frac{\Delta_{ij}}{2} + 2 \sum_{j>i} \operatorname{Im}\{\mathcal{J}_{ij}^{\alpha\beta}\} \sin \Delta_{ij}$$

- $\alpha = \beta$: survival probability
- $\alpha \neq \beta$: transition probability
- requires $U \neq 1$ and $\Delta m_{ij}^2 \neq 0$
- $\sum_{\alpha} P_{\alpha\beta} = 1 \leftrightarrow \text{conservation of probability}$
- $\mathcal{J}_{ij}^{\alpha\beta}$ invariant under $U_{\alpha j} \to e^{i\phi_{\alpha}} U_{\alpha j} e^{i\phi_{j}}$ \Rightarrow Majorana phases drop out!

CP Violation

In oscillation probabilities: $U \rightarrow U^*$ for anti-neutrinos Define asymmetries:

$$\Delta_{\alpha\beta} = P(\nu_{\alpha} \to \nu_{\beta}) - P(\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}) = P(\nu_{\alpha} \to \nu_{\beta}) - P(\nu_{\beta} \to \nu_{\alpha})$$
$$= 4 \sum_{j>i} \operatorname{Im} \{\mathcal{J}_{ij}^{\alpha\beta}\} \sin \Delta_{ij}$$

- 2 families: U is real and $\operatorname{Im}\{\mathcal{J}_{ij}^{\alpha\beta}\}=0 \ \forall \alpha, \beta, i, j$
- 3 families:

$$\Delta_{e\mu} = -\Delta_{e\tau} = \Delta_{\mu\tau} = \left(\sin \frac{\Delta m_{21}^2}{2E} L + \sin \frac{\Delta m_{32}^2}{2E} L + \sin \frac{\Delta m_{13}^2}{2E} L \right) J_{CP}$$

where $J_{CP} = \text{Im} \left\{ U_{e1} U_{\mu 2} U_{e2}^* U_{\mu 1}^* \right\}$
 $= \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$
anishes for one $\Delta m_{ij}^2 = 0$ or one $\theta_{ij} = 0$ or $\delta = 0, \pi$
• CP violation in survival probabilities vanishes:

$$P(\nu_{\alpha} \to \nu_{\alpha}) - P(\overline{\nu}_{\alpha} \to \overline{\nu}_{\alpha}) \propto \sum_{j>i} \operatorname{Im} \{\mathcal{J}_{ij}^{\alpha\alpha}\} = \sum_{j>i} \operatorname{Im} \{U_{\alpha i}^{*} U_{\alpha i} U_{\alpha j}^{*} U_{\alpha j}\} = 0$$

• Recall that $U = U_{\ell}^{\dagger} U_{\nu}$

If charged lepton masses diagonal, then m_{ν} is diagonalized by PMNS matrix:

$$m_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^T$$

Define $h = m_{\nu} \, m_{\nu}^{\dagger}$ and find that

$$\operatorname{Im} \{h_{12} \, h_{23} \, h_{31}\} = \Delta m_{21}^2 \, \Delta m_{31}^2 \, \Delta m_{32}^2 \, J_{\rm CP}$$

Two Flavor Case

$$U = \begin{pmatrix} U_{\alpha 1} & U_{\alpha 2} \\ U_{\beta 1} & U_{\beta 2} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \Rightarrow \mathcal{J}_{12}^{\alpha \alpha} = |U_{\alpha 1}|^2 |U_{\alpha 2}|^2 = \frac{1}{4} \sin^2 2\theta$$
and transition probability is
$$P_{\alpha \beta} = \sin^2 2\theta \sin^2 \frac{\Delta m_{21}^2}{4E} L$$
prob $(v_e \rightarrow v_\mu)$

$$f_{\alpha \beta} = \frac{1}{2} \int_{0}^{\infty} \frac{1}{4E} \int_{0}^{0} \frac{1}{m_e^2 - m_1^2} \int_{0}^{\infty} \frac{1}{m_e^2$$

- amplitude $\sin^2 2\theta$
- maximal mixing for $\theta = \pi/4 \Rightarrow \nu_{\alpha} = \sqrt{\frac{1}{2}} \left(\nu_1 + \nu_2\right)$
- oscillation length $L_{\rm osc} = 4\pi E / \Delta m_{21}^2 = 2.48 \frac{E}{\text{GeV}} \frac{\text{eV}^2}{\Delta m_{21}^2} \text{ km}$

$$\Rightarrow P_{\alpha\beta} = \sin^2 2\theta \, \sin^2 \pi \frac{L}{L_{\rm osc}}$$

is distance between two maxima (minima)

e.g.: $E={\rm GeV}$ and $\Delta m^2=10^{-3}~{\rm eV}^2$: $L_{\rm osc}\simeq 10^3~{\rm km}$

 $L \ll L_{\rm osc}$: hardly oscillations and $P_{\alpha\beta} = \sin^2 2\theta \, (\Delta m^2 L/(4E))^2$ sensitivity to product $\sin^2 2\theta \, \Delta m^2$

Characteristics of typical oscillation experiments

Source	Flavor	E [GeV]	L [km]	$(\Delta m^2)_{ m min}$ [eV ²]
Atmosphere	$\stackrel{(-)}{\nu_{e}},\;\stackrel{(-)}{\nu_{\mu}}$	$10^{-1} \dots 10^2$	$10 \dots 10^4$	10^{-6}
Sun	$ u_e$	$10^{-3} \dots 10^{-2}$	10^{8}	10^{-11}
Reactor SBL	$ar{ u}_e$	$10^{-4} \dots 10^{-2}$	10^{-1}	10^{-3}
Reactor LBL	$ar{ u}_e$	$10^{-4} \dots 10^{-2}$	10^{2}	10^{-5}
Accelerator LBL	$\stackrel{(-)}{\nu_{e}},\stackrel{(-)}{\nu_{\mu}}$	$10^{-1} \dots 1$	10^{2}	10^{-1}
Accelerator SBL	$\stackrel{(-)}{ u_{e}}, \stackrel{(-)}{ u_{\mu}}$	$10^{-1} \dots 1$	1	1

Quantum Mechanics

Can't distinguish the individual m_i : coherent sum of amplitudes and <u>interference</u>

Quantum Mechanics

Textbook calculation is completely wrong!!

- $E_i E_j$ is not Lorentz invariant
- massive particles with different p_i and same E violates energy and/or momentum conservation
- definite p: in space this is e^{ipx} , thus no localization

Quantum Mechanics consider E_j and $p_j = \sqrt{E_j^2 - m_j^2}$: $p_j \simeq E + m_j^2 \left. \frac{\partial p_j}{\partial m_j^2} \right|_{m_j=0} \equiv E - \xi \left. \frac{m_j^2}{2E} \right., \quad \text{with } \xi = -2E \left. \frac{\partial p_j}{\partial m_j^2} \right|_{m_j=0}$ $E_j \simeq p_j + m_j^2 \left. \frac{\partial E_j}{\partial m_j^2} \right|_{m_j = 0} = p_j + \frac{m_j^2}{2p_j} = E + \frac{m_j^2}{2E} \left(1 - \boldsymbol{\xi} \right)$ in pion decay $\pi \rightarrow \mu \nu$: $E_j = \frac{m_\pi^2}{2} \left(1 - \frac{m_\mu^2}{m_\pi^2} \right) + \frac{m_j^2}{2m_\pi^2}$

thus,

$$\boldsymbol{\xi} = \frac{1}{2} \left(1 + \frac{m_{\mu}^2}{m_{\pi}^2} \right) \simeq 0.8 \text{ in } E_i - E_j \simeq (1 - \boldsymbol{\xi}) \frac{\Delta m_{ij}^2}{2E}$$

wave packet with size $\sigma_x \gtrsim 1/\sigma_p$ and group velocity $v_i = \partial E_i / \partial p_i = p_i / E_i$:

$$\psi_i \propto \exp\left\{-i(E_i t - p_i x) - \frac{(x - v_i t)^2}{4\sigma_x^2}\right\}$$

1) wave packet separation should be smaller than $\sigma_x!$

$$L \Delta v < \sigma_x \Rightarrow \frac{L}{L_{\text{osc}}} < \frac{p}{\sigma_p}$$

(loss of *coherence*: interference impossible)

2) m_{ν}^2 should NOT be known too precisely!

(|

if known too well:
$$\Delta m^2 \gg \delta m_{\nu}^2 = \frac{\partial m_{\nu}^2}{\partial p_{\nu}} \,\delta p_{\nu} \Rightarrow \delta x_{\nu} \gg \frac{2 \, p_{\nu}}{\Delta m^2} = \frac{L_{\text{osc}}}{2\pi}$$

know which state ν_i is exchanged. *localization*)

In both cases: $P_{\alpha\alpha} = |U_{\alpha 1}|^4 + |U_{\alpha 2}|^4$ (same as for $L \gg L_{\rm osc}$)

Quantum Mechanics

total amplitude for $\alpha \to \beta$ should be given by

$$A \propto \sum_{j} \int \frac{d^3 p}{2E_j} \mathcal{A}^*_{\beta j} \mathcal{A}_{\alpha j} \exp\left\{-i(E_j t - px)\right\}$$

with production and detection amplitudes

$$\mathcal{A}_{\alpha j} \, \mathcal{A}^*_{\beta j} \propto \exp\left\{-\frac{(p-\tilde{p}_j)^2}{4\sigma_p^2}\right\}$$

we expand around \tilde{p}_j :

$$E_j(p) \simeq E_j(\tilde{p}_j) + \left. \frac{\partial E_j(p)}{\partial p} \right|_{p=\tilde{p}_j} (p-\tilde{p}_j) = \tilde{E}_j + v_j (p-\tilde{p}_j)$$

and perform the integral over p:

$$A \propto \sum_{j} \exp\left\{-i(\tilde{E}_{j}t - \tilde{p}_{j}x) - \frac{(x - v_{j}t)^{2}}{4\sigma_{x}^{2}}\right\}$$

the probability is the integral of $|A|^2$ over t:

$$P = \int dt \, |A|^2 \propto \exp\left\{-i\left[(\tilde{E}_j - \tilde{E}_k)\frac{v_j + v_k}{v_j^2 + v_k^2} - (\tilde{p}_j - \tilde{p}_k)\right]x\right\}$$
$$\times \exp\left\{-\frac{(v_j - v_k)^2 x^2}{4\sigma_x^2 (v_j^2 + v_k^2)} - \frac{(\tilde{E}_j - \tilde{E}_k)^2}{4\sigma_p^2 (v_j^2 + v_k^2)}\right\}$$

now express average momenta, energy and velocity as

$$\tilde{p}_j \simeq E - \xi \frac{m_j^2}{2E}$$

$$\tilde{E}_j \simeq E + (1 - \boldsymbol{\xi}) \frac{m_j^2}{2E}$$
, $v_j = \frac{\tilde{p}_j}{\tilde{E}_j} \simeq 1 - \frac{m_j^2}{2E^2}$

this we insert in first exponential of P:

$$\left[(\tilde{E}_j - \tilde{E}_k) \frac{v_j + v_k}{v_j^2 + v_k^2} - (\tilde{p}_j - \tilde{p}_k) \right] = \frac{\Delta m_{jk}^2 L}{2E}$$

the second exponential (damping term) can also be rewritten and the final probability is

$$P \propto \exp\left\{-i\frac{\Delta m_{ij}^2}{2E}L - \left(\frac{L}{L_{jk}^{\rm coh}}\right)^2 - 2\pi^2(1-\xi)^2 \left(\frac{\sigma_x}{L_{jk}^{\rm osc}}\right)^2\right\}$$

with

$$L_{jk}^{\rm coh} = \frac{4\sqrt{2}E^2}{|\Delta m_{jk}^2|}\sigma_x \text{ and } L_{jk}^{\rm osc} = \frac{4\pi E}{|\Delta m_{jk}^2|}$$

expressing the two conditions (coherence and localization) for oscillation discussed before

Contents

II Neutrino Oscillations

- II1) The PMNS matrix
- II2) Neutrino oscillations in vacuum
- **II3)** Results and their interpretation what have we learned?
- II4) Prospects what do we want to know?

II3) Results and their interpretation – what have we learned?

- Main results as by-products:
 - check solar fusion in Sun \rightarrow solar neutrino problem
 - look for nucleon decay \rightarrow atmospheric neutrino oscillations
- almost all current data described by 2-flavor formalism
- future goal: confirm genuine 3-flavor effects:
 - third mixing angle (check!)
 - mass ordering
 - CP violation
- have entered precision era

Interpretation in 3 Neutrino Framework assume $\Delta m^2_{21} \ll \Delta m^2_{31} \simeq \Delta m^2_{32}$ and small θ_{13} :

• atmospheric and accelerator neutrinos: $\Delta m^2_{21}L/E \ll 1$

$$P(\nu_{\mu} \to \nu_{\tau}) \simeq \sin^2 2\theta_{23} \, \sin^2 \frac{\Delta m_{31}^2}{4 E} L$$

• solar and KamLAND neutrinos: $\Delta m_{31}^2 L/E \gg 1$

$$P(\nu_e \to \nu_e) \simeq 1 - \sin^2 2\theta_{12} \, \sin^2 \frac{\Delta m_{21}^2}{4 E} \, L$$

• short baseline reactor neutrinos: $\Delta m_{21}^2 L/E \ll 1$

$$P(\nu_e \to \nu_e) \simeq 1 - \sin^2 2\theta_{13} \, \sin^2 \frac{\Delta m_{31}^2}{4 E} L$$

Solar Neutrinos

98% of energy production in fusion of net reaction

 $4p + 2e^{-} \rightarrow {}^{4}\text{He}^{++} + 2\nu_{e} + 26.73 \text{ MeV}$

26 MeV of the energy go in photons, i.e., 13 MeV per ν_e ; get neutrino flux from solar constant

 $S = 8.5 \times 10^{11} \text{ MeV cm}^{-2} \text{ s}^{-1} \Rightarrow \Phi_{\nu} = \frac{S}{13 \text{ MeV}} = 6.5 \times 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$

Solar Standard Model (SSM) predicts 5 sources of neutrinos from *pp*-chain Bahcall *et al.*

Different experiments sensitive to different energy, hence different neutrinos

- Homestake: $\nu_e + {}^{37}\mathrm{Cl} \rightarrow {}^{37}\mathrm{Ar} + e^-$
- Gallex, GNO, SAGE: $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$
- (Super)Kamiokande: $\nu_e + e^- \rightarrow \nu_e + e^-$

All find less neutrinos than predicted by SSM, deficit is energy dependent: **''solar neutrino problem''**

Breakthrough came with SNO experiment, using heavy water

charged current: $\Phi(\nu_e)$

neutral current: $\Phi(\nu_e) + \Phi(\nu_{\mu\tau})$

elastic scattering: $\Phi(\nu_e) + 0.15 \Phi(\nu_{\mu\tau})$

Results of fits give

 $\sin^2\theta_{12}\simeq 0.30$

$$\Delta m_{21}^2 \equiv \Delta m_{\odot}^2 \simeq 8 \times 10^{-5} \text{ eV}^2$$

only works with matter effects and resonance in Sun

$$\Rightarrow \Delta m_{\odot}^2 \cos 2\theta_{12} = (m_2^2 - m_1^2) (\cos^2 \theta_{12} - \sin^2 \theta_{12}) > 0$$

choosing $\cos 2\theta_{12} > 0$ fixes $\Delta m_{\odot}^2 > 0$

low E:
$$P_{ee} = 1 - \frac{1}{2} \sin^2 2\theta_{12} \simeq \frac{5}{9}$$

large E: $P_{ee} = \sin^2 \theta_{12} = \frac{1}{3}$

 $\overline{\nu_e} + p \rightarrow n + e^+$ with $E_{\nu} \simeq E_{\text{prompt}} + E_n^{\text{recoil}} + 0.8$ MeV 200 μ s later: $n + p \rightarrow d + \gamma$

Neutrinos do oscillate

Atmospheric Neutrinos

zenith angle $\cos \theta = 1$ $L \simeq 500$ km zenith angle $\cos \theta = 0$ $L \simeq 10$ km down-going zenith angle $\cos \theta = -1$ $L \simeq 10^4$ km up-going

SuperKamiokande

The Cerenkov radiation from a muon produced by a muon neutrino event yields a well defined circular ring in the photomultiplier detector bank.

> The Cerenkov radiation from the electron shower produced by an electron neutrino event produces multiple cones and therefore a diffuse ring in the detector array.

(3.8 σ evidence for ν_{τ} appearence)
Testing Atmospheric Neutrinos with Accelerators: K2K, MINOS, T2K, OPERA, No ν A

Proton beam

$$p + X \to \pi^{\pm}, \ K^{\pm} \to \pi^{\pm} \to \stackrel{(-)}{\nu_{\mu}} \quad \text{with} \ E \simeq \text{GeV}$$

If $L \simeq 100$ km:

$${\Delta m_{\rm A}^2\over E}~L\sim 1 \Rightarrow~{
m atmospheric}~
u~{
m parameters}!!$$

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - \sin^2 2\theta_{23} \, \sin^2 \frac{\Delta m_{31}^2}{4E} L$$

The third mixing: Short-Baseline Reactor Neutrinos $E_{\nu} \simeq \text{MeV}$ and $L \simeq 0.1$ km:

 $\frac{\Delta m_{\rm A}^2}{E} \ L \sim 1 \Rightarrow \text{ atmospheric } \nu \text{ parameters!!}$

$$P_{ee} = 1 - \sin^2 2\theta_{13} \, \sin^2 \frac{\Delta m_{\rm A}^2}{4E} L$$

 $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P$ $= \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{-i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{-i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{-i\delta} & c_{23} c_{13} \end{pmatrix} P$ $\text{with } P = \text{diag}(1, e^{i\alpha}, e^{i\beta})$

6 families:
$$U = R_{23} R_{13} R_{12} P$$

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{-i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{-i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{-i\delta} & c_{23} c_{13} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \text{atmospheric and} \qquad \text{SBL reactor} \qquad \text{solar and} \\ \text{LBL accelerator} \qquad \qquad \text{LBL reactor} \\\begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ (\sin^2 \theta_{23} = \frac{1}{2}) \qquad (\sin^2 \theta_{13} = 0) \qquad (\sin^2 \theta_{12} = \frac{1}{3}) \\ \Delta m_A^2 \qquad \Delta m_A^2 \qquad \Delta m_\odot^2 \end{pmatrix}$$

Tri-bimaximal Mixing

approximation to PMNS matrix:

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

Harrison, Perkins, Scott (2002)

with mass matrix

$$(m_{\nu})_{\text{TBM}} = U_{\text{TBM}}^{*} m_{\nu}^{\text{diag}} U_{\text{TBM}}^{\dagger} = \begin{pmatrix} A & B & B \\ \cdot & \frac{1}{2}(A+B+D) & \frac{1}{2}(A+B-D) \\ \cdot & \cdot & \frac{1}{2}(A+B+D) \end{pmatrix}$$

$$A = \frac{1}{3} \left(2 m_1 + m_2 e^{-2i\alpha} \right), \quad B = \frac{1}{3} \left(m_2 e^{-2i\alpha} - m_1 \right), \quad D = m_3 e^{-2i\beta}$$
$$\Rightarrow \text{Elayor symmetries}...$$

Tri-bimaximal Mixing

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

Harrison, Perkins, Scott (2002) This was still okay till end of 2010...

 $|U|^{2} \simeq \begin{pmatrix} 0.779 \dots 0.848 & 0.510 \dots 0.604 & 0.122 \dots 0.190 \\ 0.183 \dots 0.568 & 0.385 \dots 0.728 & 0.613 \dots 0.794 \\ 0.200 \dots 0.576 & 0.408 \dots 0.742 & 0.589 \dots 0.775 \end{pmatrix}$

- normal ordering: $\Delta m_{31}^2 > 0$
- inverted ordering: $\Delta m^2_{31} < 0$

T2K: 2.5σ

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{A}^{2}}{4E} L$$

More data

- MINOS: 1.7σ
- Double Chooz: $0.017 < \sin^2 2\theta_{13} < 0.16$ at 90 % C.L.

$$P_{ee} = 1 - \sin^2 2\theta_{13} \, \sin^2 \frac{\Delta m_A^2}{4E} L$$

θ_{13} : status

Double Chooz: $\sin^2 2\theta_{13} = 0.086 \pm 0.051 \neq 0 \text{ at } 1.9\sigma (3.1)$ Daya Bay: $\sin^2 2\theta_{13} = 0.092 \pm 0.017 \neq 0 \text{ at } 5.2\sigma (>7)$ RENO: $\sin^2 2\theta_{13} = 0.113 \pm 0.023 \neq 0 \text{ at } 4.9\sigma$

at least, Double Chooz are the only ones who made it to Big Bang Theory...

What's that good for?

Predictions of All 63 Models

CKM vs. PMNS $|V_{\rm CKM}| \simeq$ $\begin{pmatrix} 0.97419 & 0.2257 & 0.00359 \\ 0.2256 & 0.97334 & 0.0415 \\ 0.00874 & 0.0407 & 0.999133 \end{pmatrix}$

$$|U_{\rm PMNS}| \simeq \left(\begin{array}{cccc} 0.82 & 0.58 & 0\\ 0.64 & 0.58 & 0.71\\ 0.64 & 0.58 & 0.71 \end{array}\right)$$

Contents

II Neutrino Oscillations

- II1) The PMNS matrix
- **II2)** Neutrino oscillations in vacuum and matter
- **II3)** Results and their interpretation what have we learned?
- II4) Prospects what do we want to know?

II4) Prospects – what do we want to know? 9 physical parameters in m_{ν}

- $heta_{12}$ and $m_2^2 m_1^2$ (or $heta_{\odot}$ and Δm_{\odot}^2)
- $heta_{23}$ and $|m_3^2 m_2^2|$ (or $heta_{
 m A}$ and $\Delta m_{
 m A}^2$)
- $heta_{13}$ (or $|U_{e3}|$)
- m_1 , m_2 , m_3
- $sgn(m_3^2 m_2^2)$
- Dirac phase δ
- Majorana phases α and β (or α_1 and α_2 , or ϕ_1 and ϕ_2 , or...)

The future: open issues for neutrinos oscillations Look for *three flavor effects:*

- precision measurements
 - how maximal is θ_{23} ? how small/large is U_{e3} ?
- sign of Δm^2_{32} ?

 $\tan 2\theta_m = f(\operatorname{sgn}(\Delta m^2))$

- is there CP violation?
- Problems:
 - two small parameters: $\Delta m^2_\odot / \Delta m^2_{
 m A} \simeq 1/30$ and $|U_{e3}| \lesssim 0.2$
 - 8-fold degeneracy for fixed L/E and $\nu_e \rightarrow \nu_\mu$ channels

Degeneracies

Expand 3 flavor oscillation probabilities in terms of $R = \Delta m_{\odot}^2 / \Delta m_A^2$ and $|U_{e3}|$:

$$P(\nu_e \to \nu_\mu) \simeq \sin^2 2\theta_{13} \, \sin^2 \theta_{23} \, \frac{\sin^2 (1 - \hat{A})\Delta}{(1 - \hat{A})^2} + R^2 \, \sin^2 2\theta_{12} \, \cos^2 \theta_{23} \frac{\sin^2 \hat{A}\Delta}{\hat{A}^2}$$

 $+\sin\delta\sin2\theta_{13} \mathbf{R} \sin2\theta_{12} \cos\theta_{13} \sin2\theta_{23} \sin\Delta \frac{\sin\hat{A}\Delta\sin(1-\hat{A})\Delta}{\hat{A}(1-\hat{A})}$

$$+\cos\delta\sin 2\theta_{13} \mathbf{R} \sin 2\theta_{12} \cos\theta_{13} \sin 2\theta_{23} \cos\Delta \frac{\sin\hat{A}\Delta\sin(1-\hat{A})\Delta}{\hat{A}(1-\hat{A})}$$

with
$$\hat{A}=2\sqrt{2}\,G_F\,n_e\,E/\Delta m_{
m A}^2$$
 and $\Delta=rac{\Delta m_{
m A}^2}{4\,E}\,L$

- $\theta_{23} \leftrightarrow \pi/2 \theta_{23}$ degeneracy
- θ_{13} - δ degeneracy
- δ -sgn $(\Delta m_{\rm A}^2)$ degeneracy

Solutions: more channels, different L/E, high precision,...

Degeneracies

Expand 3 flavor oscillation probabilities in terms of $R = \Delta m_{\odot}^2 / \Delta m_A^2$ and $|U_{e3}|$:

$$P(\nu_e \to \nu_\mu) \simeq \sin^2 2\theta_{13} \, \sin^2 \theta_{23} \, \frac{\sin^2 (1 - \hat{A})\Delta}{(1 - \hat{A})^2} + R^2 \, \sin^2 2\theta_{12} \, \cos^2 \theta_{23} \frac{\sin^2 \hat{A}\Delta}{\hat{A}^2}$$

 $+\sin\delta\sin 2\theta_{13} R \sin 2\theta_{12} \cos\theta_{13} \sin 2\theta_{23} \sin\Delta \frac{\sin\hat{A}\Delta \sin(1-\hat{A})\Delta}{\hat{A}(1-\hat{A})}$

 $+\cos\delta\sin 2\theta_{13} R \sin 2\theta_{12} \cos\theta_{13} \sin 2\theta_{23} \cos\Delta \frac{\sin\hat{A}\Delta \sin(1-\hat{A})\Delta}{\hat{A}(1-\hat{A})}$

with
$$\hat{A}=2\sqrt{2}\,G_F\,n_e\,E/\Delta m_{
m A}^2$$
 and $\Delta=rac{\Delta m_{
m A}^2}{4\,E}\,L$ If $\hat{A}\,\Delta=\pi$:

$$P(\nu_e \to \nu_\mu) \simeq \sin^2 2\theta_{13} \, \sin^2 \theta_{23} \, \frac{\sin^2 (1 - \hat{A})\Delta}{(1 - \hat{A})^2}$$

This is the "magic baseline" of $L = \frac{\sqrt{2}\pi}{G_F n_e} \simeq 7500 \text{ km}$

Typical time scale **10⁻⁵** MINOS CNGS D-CHOOZ *v*-factories T2K 10^{-4} NOVA **Reactor-II** Superbeam upgrades $\sin^2 2\theta_{13}$ discovery reach (3σ) NOVA+FPD 2ndGenPDExp NuFact 10⁻³ Superbeams+Reactor exps 10⁻² Branching point Conv. beams **10⁻¹** CHOOZ+Solar excluded 10⁰ 2005 2010 2015 2020 2025 2030 Year

Future experiments

- what detector?
 - Water Cerenkov?
 - liquid scintillator?
 - liquid argon?
- Neutrino Physics
 - oscillations (hierarchy, CP, precision)
 - non-standard physics (NSIs, unitarity violation, steriles, extra forces,...)
- other physics
 - SN (burst and relic)
 - geo-neutrinos
 - p-decay

Example LBNE

$\mathsf{FNAL} \to \mathsf{Homestake}, \, L = 1300 \ \mathrm{km}$

Example ICAL at INO

7300 km from CERN, 6600 km from JHF at Tokai

• inverted ordering: $\Delta m^2_{31} < 0$

We don't know the zero point!

Neutrino masses

- neutrino masses \leftrightarrow scale of their origin
- neutrino mass ordering \leftrightarrow form of m_{ν}

- $m_3^2 \simeq \Delta m_A^2 \gg m_2^2 \simeq \Delta m_\odot^2 \gg m_1^2$: normal hierarchy (NH)
- $m_2^2 \simeq |\Delta m_A^2| \simeq m_1^2 \gg m_3^2$: inverted hierarchy (IH)
- $m_3^2 \simeq m_2^2 \simeq m_1^2 \equiv m_0^2 \gg \Delta m_A^2$: quasi-degeneracy (QD)

Summary

Neutrinos are massive: \Rightarrow 3 Tasks

- determine parameters
- explain why neutrinos are so light
- explain why leptons mix so weirdly

Experiment	Status	Name	Start
$\rm W \check{C} \ (3 \ kton)$	finished	Kamiokande	1983
WC (50 kton)	running	${ m SuperKamiokande}$	1996
$ m W\check{C}~(1000~kton)$	proposed	HyperK, MEMPHYS	2015?
li. Ar	in discussion	GLACIER	2015?
li. Szintillator	in discussion	LENA	2015?
Monopoles and CR	finished	MaCRO	1994
Solar B	finished	SNO	2001
Solar Be	in construction	Borexino	2006?
Solar pp	running	Gallex, SAGE	1991
Solar pp	proposed	LENS	
Reactor	finished	CHOOZ	1997
Reactor	running	KamLAND	2002
Reactor	proposed	Double-CHOOZ, DayaBay	2009
Long baseline	finished	K2K	1999
Long baseline	in construction	CNGS	2006
Long baseline	in construction	NuMI	2004
Long baseline	proposed	$No\nu a$	2011
Long baseline	funded	T2K	2009
Long baseline	proposed	Super-beam	2010?
Long baseline	in discussion	ν -Fabrik	2020?
Long baseline	in discussion	eta-beam	2020?
Cosm. Rays	running	Auger	2006
ν -telescope	funded	ANITA	2007
ν -telescope	in construction	IceCube	2009?
u-telescope	proposed	m KM3NeT	2012?
β -decay at 2 eV	finished	Mainz, Troitsk	1993
β -decay at 0.2 eV	in construction	KATRIN	2008
$0\nu\beta\beta$ at 1 eV	finished	$\mathbf{H}\mathbf{M}$	1990
0 uetaeta at 0.1 eV	running	Cuoricino, NEMO3	2003
$0\nu\beta\beta$ at 0.1 eV	in construction	GERDA	2008
0 uetaeta at 0.01 eV	proposed		2012?
t-Scale DM search	proposed		2012?
u-couplings	finished	m NuTeV	1996
$e\bar{e}$ -collider (103 GeV)	finished	LEP	1989
$e\bar{e}$ -collider (0.5 TeV)	proposed	ILC	2020?
pp-collider (7 TeV)	in construction	LHC	2008
Satellite	running	WMAP	2003
Satellite	in construction	Planck	2007
Satellite	in construction	GLAST	2008
Gravitational waves	running	LIGO + VIRGO	2002

