

Standard Model of Particle Physics

Heidelberg SS 2012

Tests of the Standard Model II

Schöning/Rodejohann

1

			TSCH	DEU	SPA	ENG			
			0:1	4:2	2:0	0:0			
Pos	+/-	Name	POR	GRI	FRA	ITA	<u>Pkt</u>	Siege	Ges
1.	•	DanielW	1:2 <mark>3</mark>	1:0 <mark>2</mark>	1:0 <mark>2</mark>	2:1	7	1,00	53
2.	11	SteffenSchmidt	0:14	2:0 <mark>3</mark>	2:1 <mark>2</mark>	1:12	11	0,83	50
3.	1	Jo	1:2 <mark>3</mark>	2:0 <mark>3</mark>	3:1 <mark>3</mark>	2:1	9	0,33	49
3.	•	tuti	1:2 <mark>3</mark>	3:1 <mark>3</mark>	2:0 <mark>4</mark>	2:1	10	0,33	49
5.	•	Mattia	0:14	2:0 <mark>3</mark>	1:0 <mark>2</mark>	1:12	11	0,50	48
6.	21	das	1:2 <mark>3</mark>	2:1 <mark>2</mark>	2:0 <mark>4</mark>	1:2	9	0,50	43
7.	21	Tango12	0:14	2:0 <mark>3</mark>	2:1 <mark>2</mark>	1:2	9		43
8.	1.	B.Knorr	1:3 <mark>2</mark>	2:0 <mark>3</mark>	2:1 <mark>2</mark>	1:0	7		42
8.	11	W.Rodejohann	1:2 <mark>3</mark>	2:0 <mark>3</mark>	1:0 <mark>2</mark>	1:2	8		42
10.	11	S.Dittmeier	1:2 <mark>3</mark>	1:0 <mark>2</mark>	2:0 <mark>4</mark>	1:2	9		40
11.	3合	CarloL	0:1 <mark>4</mark>	2:0 <mark>3</mark>	1:0 <mark>2</mark>	0:1	9		38
11.	41	Neues-Omma-Sofa	1:2 <mark>3</mark>	2:0 <mark>3</mark>	2:0 <mark>4</mark>	0:1	10		38
11.	11	ssb	1:2 <mark>3</mark>	2:0 <mark>3</mark>	2:1 <mark>2</mark>	0:1	8		38
14.	11	faco	0:0	1:0 <mark>2</mark>	2:0 <mark>4</mark>	1:1 <mark>2</mark>	8		36
14.	8	Jiri					0		36
16.	1 🛧	Higgs125	1:2 <mark>3</mark>	3:1 ₃	1:0 ₂	2:1	8		34
17.	11	Nikolai	1:3 <mark>2</mark>	3:1 <mark>3</mark>	3:1 <mark>3</mark>	1:2	8	0,50	33
18.	6🖊	F.Foerster					0		30
19.	•	Knarf					0		0

Gesamtübersicht										
		Spieltage				Gesamt				
Pos.	Teilnehmer	<u>Fr</u>	<u>1</u>	<u>2</u>	<u>3</u>	Vi	<u>Ha</u>	<u>Fi</u>	Sq	Pkt
1.	DanielW	0	13	13	20	7			1,00	53
2.	SteffenSchmidt	0	9	17	13	11			0,83	50
3.	Jo	0	13	17	10	9			0,33	49
3.	tuti	0	7	17	15	10			0,33	49
5.	Mattia	0	8	15	14	11			0,50	48
6.	das	0	14	7	13	9			0,50	43
7.	Tango12	0	10	14	10	9				43
8.	B.Knorr	0	11	10	14	7				42
8.	W.Rodejohann	0	8	12	14	8				42
10.	S.Dittmeier	0	6	12	13	9				40
11.	CarloL	0	5	9	15	9				38
11.	Neues-Omma-Sofa	0	9	8	11	10				38
11.	ssb	0	3	13	14	8				38
14.	faco	0	8	10	10	8				36
14.	Jiri	0	8	12	16	0				36
16.	Higgs125	0	4	7	15	8				34
17.	Nikolai	0	14	11	0	8			0,50	33
18.	F.Foerster	0	9	13	8	0				30
19.	Knarf	0	0	0	0	0				0

Schöning/Rodejohann

Contents

- Intro: Search Limits
- Higgs Mass Predictions
- Higgs Searches at LEP
- Higgs Searches at Hadron Colliders
- WW-Scattering Amplitude

Statistics and Limit Setting

chi² fit:

 $\chi^2 = \sum_i \frac{(y_i - \mu_i)^2}{\sigma_i^2}$

chi² fit with correlated errors:

$$\chi^{2} = \sum_{i} \sum_{j} (y_{i} - \mu_{i}) cov_{ij}^{-1} (y_{j} - \mu_{j})$$

y_i measurement

 μ_i model prediction (nuisance parameter) σ_i uncortainty (statistical and systematical

 σ_i uncertainty (statistical and systematical)

Parameter Fit: $\mu_i = \mu_i(x_1, x_2, \dots, x_n)$ x_k model parameter χ^2 2σ χ^2_{min} +4 95% confidence level 1σ $\chi^2_{\rm min}$ +1 68% confidence level χ^2_{min} good fit if: $\chi^2_{\rm \ min}$ / degrees of freedom ~ 1 $X_{k,0}$ X Standard Model of Particle Physics SS 2012 Schöning/Rodejohann 4

Example Fit

Measurement of some mass (1-Parameter fit) from 4 experiments:

Probability Densities

for the above example a gaussian probability density was used

Gaussian (nornal)distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \to P(a < x < b) = \int_a^b f(x) \, dx$$

used for systematic uncertainties (symmetric)

Poissonan distribution:

 $P(N) = \frac{e^{-\mu} \mu^N}{N!}$

used for statistical uncertainties

Note, Poisson distribution approaches Gaussian distribution for large μ

Schöning/Rodejohann

Limit Setting Philosophies

Baysian Method:

- based on the experiment posterior exclusion limits are calculated
- Iow probability models are excluded
- probabilities are assigned to models using a prior

"natural method" but choose of prior is arbitrary

Frequentist Method:

- based on Monte Carlo toy experiments probabilities are assigned to all possible experimental outcomes
- exclusion limit is set by that model which excludes this experimental outcome with certain confidence interval

computationally expensive and might give unphysical results (e.g. negative cross sections)

Baysian Method

Model: $N = N_{BG} + N_{Sia}$ (background + signal) $\sigma = \sigma_{BG} + \sigma_{Sig} = N/L$ choose cross section as "prior" χ^2 **Probability:** CL 1-CL $P \propto e^{-rac{1}{2}(\chi^2(\sigma)-\chi^2_{fit})}$ excluded not allowed additional constraint: $\chi^2_{\rm min}$ $\sigma > \sigma_{BG}$ because $\sigma_{Sig} > 0$ σ_{limit} $\sigma_{BG}^{}$ $\sigma_{fit}^{}$ σ aC

$$CL = \frac{\int_{\sigma > \sigma_{BG}}^{\infty} P(\sigma) \, d\sigma}{\int_{\sigma > \sigma_{BG}}^{\infty} P(\sigma) \, d\sigma}$$

CL = confidence level

Choice of Prior

- Cross sections depend on couplings
- Choose coupling as prior

$$\sigma_{sig} = \sigma_0 \alpha^2$$
$$\frac{d\sigma}{d\alpha} = \frac{d\sigma_{sig}}{d\alpha} = 2\sigma_0 \alpha$$

$$CL = \frac{\int_{\alpha>0}^{\alpha_{CL}} P(\alpha) \, d\alpha}{\int_{\alpha>0}^{\infty} P(\alpha) \, d\alpha} = \frac{\int_{\alpha>0}^{\alpha_{CL}} P(\alpha) / \alpha \, d\sigma}{\int_{\alpha>0}^{\infty} P(\alpha) / \alpha \, d\sigma} \neq \frac{\int_{\sigma_{Sig}>0}^{\sigma_{CL}} P(\sigma) \, d\sigma}{\int_{\sigma_{Sig}>0}^{\infty} P(\sigma) \, d\sigma}$$

Results depends on choice of prior!

Frequentist Method

set limit with 95% confidence level for mu=4.6
 experiment has a 5% probability to happen

Schöning/Rodejohann

Frequentist Method

In case of many observables x_k a combined discriminator variable is often defined: $D = D(x_1, x_2, x_3, \dots X_k)$

- Iarge discriminator means high probability
- small discriminator means low probability

Often, the output from artificial neural nets or other multivariate methods is used as discriminator variable

Problem with Frequentist Method

Problem in case of a very small measurement value with P(BG)< (1-CL)would require a negative signal cross section:

unphysical solution!

CL_s Method

- Use ratio of two probabilities CL_s instead of α to test against CL

$$CL_{SB} = \alpha = \int_{X < X_{obs}} P(X|\text{signal} + \text{bgr}) dX$$
$$CL_{B} = \int_{X < X_{obs}} P(X|\text{bgr}) dX$$

$$CL_{S} = \frac{CL_{SB}}{CL_{B}}$$

Standard model has CL_s=1 and is never excluded

 $CL_{S} > CL_{SB}$ by definition!

Schöning/Rodejohann

Schöning/Rodejohann

Higgs Mass Constraints

Radiative Corrections and Indirect Higgs Constraints

Indirect Higgs Mass Prediction

Take the top mass from direct measurements and use the radiative corrections to determine the Higgs mass.

$$\Delta r(m_t, M_H) = -\frac{3\alpha \cos^2 \theta_w}{16\pi \sin^4 \theta_w} \frac{m_t^2}{M_W^2} - \frac{11\alpha}{48\pi \sin^2 \theta_w} \ln \frac{M_H^2}{M_W^2} - \dots$$

function of the Higgs mass.

Schöning/Rodejohann

Higgs Mass Predictions

Schöning/Rodejohann

W-Top-Higgs Mass Relation and SUSY

Schöning/Rodejohann

Higgs Direct Searches at LEP

Higgs-Fermion Coupling:

$$L_{Y} = -g_{b} \overline{L} \Phi b_{R} - g_{t} \overline{L} \overline{\Phi} t_{R} \quad \text{with} \quad L = \begin{pmatrix} t \\ b \end{pmatrix}, \quad \Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}, \quad \tilde{\Phi} = i \tau_{2} \Phi^{*}$$

Higgs couples to masses:

$$m_{b,t} = \frac{g_{b,t}v}{\sqrt{2}}$$

Electron-Positron annihilation has tiny Higgs coupling!

```
LEP Process (Higgs-Strahlung): e^+ e^- \rightarrow ZH

e^+

Z

Z

H

ZZ

H
```

ZZH couling is large!

ZH Signature at LEP

Higgs decays dominantly into heaviest fermions:

 $ZH \rightarrow Z bb \rightarrow II bb, jj bb, bbbb, vv bb$

All decay channels require (double) b-tag (lifetime)

LEP2 with E_{cms} =205 GeV:

installation of vertex detectors

• sensitivity up to $m_{H} = 114 \text{ GeV} (E_{cms} = m_{H} + m_{Z})$

bbjj-candidate at ALEPH

Schöning/Rodejohann

Combined LEP2 Higgs Limit

no signficant excess

Higgs excluded with: m_H < 114.4 GeV (expected 115.3) at 95% CL

The bands shows the 1 sigma and 2 sigma contours of the expected limit

Schöning/Rodejohann

Higgs LEP2 Direct Limits

Higgs Production at Tevatron

Schöning/Rodejohann

26

Schöning/Rodejohann

Combination Tevatron Searches

Schöning/Rodejohann

Tevatron Run II Preliminary, $\langle L \rangle = 5.9 \text{ fb}^{-1}$

Situation before LHC

http://lepewwg.web.cern.ch/LEPEWWG/

Higgs Production at LHC

proton-antiproton at Tevatron s^{1/2}=2 TeV

proton-proton at LHC s^{1/2}=14 TeV

much larger cross sections! also higher luminosity!

Candidate $H \rightarrow ZZ \rightarrow \mu\mu\mu\mu$

Special Importance H $\rightarrow \gamma \gamma$

Summary ATLAS Searches

Schöning/Rodejohann

Higgs $\rightarrow \gamma \gamma$ Search

Schöning/Rodejohann

CMS Higgs Search (2011 data)

very consistent with ATLAS results, Higgs?

Schöning/Rodejohann

Current Situation (June 2012)

Schöning/Rodejohann

WW Scattering Diagrams

In case that no Higgs signal is seen:

- non resonant Higgs field?
- non SM Higgs?
- no Higgs at all?
- study in detail WW scattering amplitudes!

Summary

- Indirect constraints predict a light Higgs in the Standard Model
- Experimentally a Higgs with m_H=125 GeV is most difficult too find
- Direct searches exclude (June 2012) Higgs except for a small region around m_H=125 GeV
- Excess of Higgs candidate events at m_H=125 by ATLAS and CMS. Even more than is expected by SM Higgs model.
- Interestingly, m_H=125 GeV is theoretically also favored by vacuum stability and triviality reasons. No new physics required up to very high mass scales (e.g GUT scale)!