

Standard Model of Particle Physics

Heidelberg SS 2012

Experimental Tests of QED Part 2

Schöning/Rodejohann

Overview

<u>PART I</u>

- Cross Sections and QED tests
- Accelerator Facilities + Experimental Results and Tests

PART II

- Tests of QED in Partice Decays
- QED Radiative Effects (Bremsstrahlung, Higher Order Processes)

Electromagnetic Decay of Pion

- Pion is the lightest hadron (meson)
- consists of u and d quarks (isospin triplet)
- No strong or weak decay possible

Can the electromagnetic decay of the pion be described by QED?

<u>Complication</u>: quarks are involve large QCD corrections! <u>Solution</u>: introduce pion form factor

Test Pion Branching Ratios

- dominant decay: $B(\pi^0 \rightarrow \gamma\gamma) = 98.823 \%$
- radiative decay: $B(\pi^0 \rightarrow e^+e^-\gamma) = 1.174 \%$
- 2-prong decay: $B(\pi^0 \to e^+e^-) = 6.46 \times 10^{-8}$

Can QED describe this surprisingly small branching ratio?

Vector Currents:

Polarisation of helicity state is given by fermion velocity:

 $\langle \lambda \rangle = \pm \beta$ for right/left chiralities

Schöning/Rodejohann

4

• Vector currents conserve helicity.

 $j_{elm}^{\mu} = \overline{v}(x) \gamma^{\mu} u(x)$ per photon/fermion vertex

- Resulting spin should be $J(\pi^0)=1$
- But pion is a Pseudo-scalar $J(\pi^0)=0$
 - → contradiction → helicity suppression

Resulting suppression factor:

$$\frac{1}{16}(1-\beta_q^2)(1-\beta_e^2) = \frac{1}{16\gamma_q^2\gamma_q^2} = \frac{m_q^2m_e^2}{m_\pi^4}$$

no scalar couplings! ~ 3 · 10⁸ Standard Model of Particle Physics SS 2012

QED Radiative Effects

- Bremsstrahlung
- Higher Order Processes

Experimentally very important:

- can be exploited for measurements (luminosity, radiative returns)
- but can also disturb measurements!

Electron-Proton Collider HERA

$E_{e} = 26.7 \text{ GeV} \quad E_{p} = 920 \text{ GeV}$

HERA

Proton Parton Densities

Schöning/Rodejohann

7

Kinematics Scattering Process

Lorentz Invariant Kinematics of Deep Inelastic Scattering Process

with cms energy: s = 2 p P

Schöning/Rodejohann

Determination of Luminosity?

Reference Process

Need process with large cross section

- Bethe Heitler Process: $e p \rightarrow ep \gamma$
- Bremsstrahlung-Process with large cross section (~ 1 barn)!

Note,

- the proton stays intact (elastic)!
- the cross section can only be given for a minimum photon energy! (infrared singularity)

Schöning/Rodejohann

Radiative Effects in Electon-Proton Scattering

from last lecture: Bremsstrahlung proportional to

$$\frac{1}{(p-h)^2-m^2}$$

Bremsstrahlung effects are large for particles with low mass

Electron mass: $m_e = 0.511 \text{ MeV}$ Proton mass: $m_p = 938 \text{ GeV}$

Radiation is large if

- 1. photon is **soft**
- 2. photon is emitted collinear

Photons can be emitted from

- 1. incoming electron (initial state radiation, **ISR**)
- 2. outgoing electron (final state radiation, FSR)

Schöning/Rodejohann

heavy radiation!

Radiative Poles

Neglecting the small electron mass, the poles become:

Note ISR reduces the available center of mass energy s^{1/2}

Initial State Radiation?

Schöning/Rodejohann

Energy *E* conserved and momentum *p* conserved $E-p_{z}$ conserved

 $E-p_{z}$ (proton)=0 $E-p_{z}$ (electron) = 2 x 26.7 GeV

Schöning/Rodejohann

Kinematic Reconstruction of ISR

Photondetector at H1

Radiative Poles

Neglecting the small electron mass, the poles become:

Note ISR reduces the available center of mass energy s^{1/2}

• There is a third pole (Compton events / Wide Angle Bremsstrahlung):

 $\frac{A_c}{\left(p-p'-k\right)^2} = \frac{1}{q^2}$

(energy is transferred from the proton to the electron line)

Final State electron and photon can have large opening angles and are $p_{\scriptscriptstyle T}$ balanced

Schöning/Rodejohann

Bethe Heitler Process

Cross section is largest if electron and photon are scattered (emitted) at small angle (Compton and ISR/FSR poles combined)

Electron and photon go down the beampipe and are not registered in the central detector

Schöning/Rodejohann

Luminosity Measurement at HERA

dedicated electron and photon detectors

H1 Luminosity Detectors

Method: measure coincidence signal

Schöning/Rodejohann

Coincidence Technique

Schöning/Rodejohann

Data Monte Carlo Comparison

Photon Detector Energy

Schöning/Rodejohann

29

Principle of Luminosity Measurement

Integration of the instantaneous luminosity:

$$\mathcal{L}_{\rm b} = \int_0^{\Delta T} L_{\rm b}(t) \mathrm{d}t$$

Relation between Photon counts, Bethe-Heitler cross section and integrated Luminosity

$$N_{\gamma}(E > \epsilon) = \mathcal{L}_{\rm b} A \int_{\epsilon}^{\infty} \frac{\mathrm{d}\sigma_{\rm BH}}{\mathrm{d}E} \mathrm{d}E$$

Schöning/Rodejohann

Breakdown of Systematic Errors

Item	Online Actual	Offline Actual	Online Upgrade
Theoretical uncertainty	0.5	0.5	0.5
Trigger efficiency	0.1	0.1	_
Background subtraction	0.3	0.2	0.2
Pile up corrections	0.3	0.2	—
Photon detector acceptance	1.0	0.6	0.5
E-scale, resolution	2.0	0.7 - 1.2	0.6
p-bunch satellites	2.0	0.5	-1.0

Pileup Correction →

Effect of Pileup

 $E_{\rm PD}/\,{\rm GeV}$

QED Compton Analysis

Determination of the Integrated Luminosity in the H1 Experiment at HERA using Elastic QED Compton Events (version of April 18, 2012)

to be published in the next days

H1 Collaboration

QED Compton Event

QED Compton Events

Back-to-Back Topology:

Schöning/Rodejohann

Radiative Corrections to Compton Events!

Uncertainties to Compton Analysis

Trigger uncertainties		Background uncertainties	
Trigger efficiency	0.02%	non-elastic QEDC	1.11%
Veto inefficiency	0.22%	elastic DVCS	0.25%
	0.22%	<i>p</i> -dissociative DVCS	0.08%
Reconstruction uncertainties		diffractive ρ	0.03%
SpaCal energy scale	0.56%	diffractive ϕ	< 0.01%
SpaCal energy resolution	1.10%	diffractive ω	0.03%
SpaCal position resolution	0.34%	diffractive J/ψ	0.03%
CIP efficiency	0.18%	diffractive ψ'	0.08%
CIP resolution	< 0.01%	diffractive Υ	0.01%
Conversion probability	0.33%	non-resonant diffractive DIS	0.16%
Alignment	0.39%	$ep \rightarrow epe^+e^-$	0.13%
z-vertex distribution	0.24%		1.17%
SpaCal cluster finder	0.04%	QEDC theory uncertainties	
CTD efficiency	0.03%	Higher order corrections	0.99%
LAr energy veto	0.05%	Proton form factor	0.35%
	1.41%		1.05%

total systematic error [in percent]: $0.22^2 + 1.41^2 + 1.17^2 + 1.05^2 = 2.12^2$

Schöning/Rodejohann

Bremsstrahlung in Charged Currents

Figure 1.7: Feynman diagrams for scattering with radiation.

Neutrinos are note seen in detector and create missing p_{τ}

Charged Current Event with Bremsstrahlung

Schöning/Rodejohann

Radiative Charged Current Events and W-W-γ Coupling

The W-boson is electrically charged and can also radiate photons! It is possible to test anomalous couplings

Radiative Corrections

Higher order leading logarithmic QED corrections to deep inelastic ep scattering at very high energies have significant impact on the kinematic reconstruction

These logarithmic QED corrections come from multiple photon emissions

 systematic error of precision measurements

Exploitation of ISR

- ISR reduces the center of mass energy of the actual hard interaction
- This can be used to extend the kinematic phase space to lower energies

$$Q^2 = -q^2 = -(p-p')^2$$

allows to access smaller values of Q² which could not be reached otherwise!

Exploitation of ISR

Schöning/Rodejohann

Higher Order Processes at HERA

Alpha⁴ Processes at HERA

Schöning/Rodejohann

46

Radiative Returns

Z-boson are resonantly produced in $e^+ e^-$ collisions at resonance (m₇ ~91 GeV)

For $s^{1/2} > m_z$ the radiative return allows a return to the resonance: $e^+ e^- \rightarrow Z \gamma$

This effect can be large, e.g. at LEP

Schöning/Rodejohann

DELPHI Radiative Return Event at LEP

Schöning/Rodejohann

Measurement of Radiative Return

radiative returns are externely important!

incl. radiative return

no radiative return

Schöning/Rodejohann

Radiative Return at KLEO (Daphne)

Schöning/Rodejohann

 $e^+ e^-$ collider at $s^{1/2} = 1$ GeV

Standard Model of Particle Physics SS 2012

50

Radiative Returns at Barbar

 $e^+ e^-$ collider at $s^{1/2} = 10$ GeV

 $e^+ e^- \rightarrow p \bar{p} \gamma$

Schöning/Rodejohann