

Standard Model of Particle Physics

Heidelberg SS 2012

Experimental Tests of QED Part 1

Schöning/Rodejohann

1

Overview

PART I

- Cross Sections and QED tests
- Accelerator Facilities + Experimental Results

PART II

- Tests of QED in Partice Decays and Resonances
- QED Radiative Effects

Measurement of Cross Sections

 $e^+e^- \rightarrow X$ $(e^-e^- \rightarrow X)$

test predictions of QED

Measurement of Cross Sections

$$e^+e^- \rightarrow X$$

 $(e^-e^- \rightarrow X)$

test predictions of QED

Why is α_{em} =1/137 so small? Breakdown at higher energies?

Measurement of Cross Sections

$$e^+e^- \rightarrow X$$

($e^-e^- \rightarrow X$)

test predictions of QED

Why is α_{em} =1/137 so small? Breakdown at higher energies?

Reactions depend on center of mass → many different accelerators

Synchrotron Radiation Law::

$$P \propto rac{E^4}{R^2}$$

Iarge accelerators required for high energies

Schöning/Rodejohann

List of ee-Accelerators

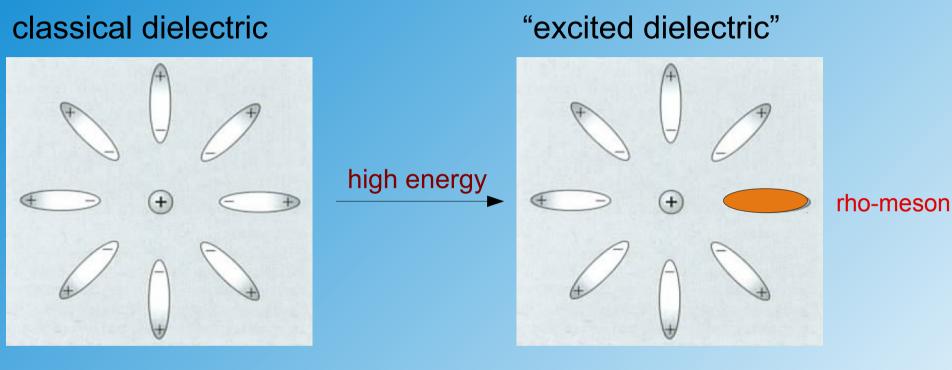
Accelerator	Location	Years of operation	Shape and circumference		Positron energy	Experiments	Notable Discoveries
AdA	Frascati, Italy; Orsay, France	1961—1964	Circular, 3 meters	250 Me∨	250 Me∨		Touschek effect (1963); first e ⁻ e ⁻ interactions recorded (1964)
Princeton-Stanford (e ⁻ e ⁻)	Stanford, California	1962–1967	Two-ring, 12 m	300 Me∨	300 Me∨		e ⁻ e ⁻ interactions
VEP-1 (e ⁻ e ⁻)	INP, Novosibirsk, Soviet Union	1964-1968	Two-ring, 2.70 m	130 Me∨	130 Me∨		e ⁻ e ⁻ scattering; QED radiative effects confirmed
VEPP-2	INP, Novosibirsk, Soviet Union	1965–1974	Circular, 11.5 m	700 Me∨	700 Me∨	OLYA, CMD 🛃	multihadron production (1966), e⁺e¯→φ (1966), e⁺e¯→γγ (1971)
SPEAR	SLAC	1972-1990(?)				Mark I, Mark II, Mark III	Discovery of Charmonium states
VEPP-2M ₫	BINP, Novosibirsk	1974–2000	Circular, 17.88 m	700 Me∨	700 Me∨	ND, SND, CMD-2 🗗	e^+e^- cross sections, radiative decays of $\rho,\omega,\text{and}\phi$ mesons
DORIS	DESY	1974–1993	Circular, 300m	5 GeV	5 GeV	ARGUS, Crystal Ball, DASP, PLUTO	Oscillation in neutral B mesons
PETRA	DESY	1978–1986	Circular, 2 km	20 GeV	20 GeV	JADE, MARK-J, PLUTO, TASSO	Discovery of the gluon in three jet events
CESR	Cornell University	1979–2002	Circular, 768m	6 GeV	6 GeV	CUSB, CHESS, CLEO, CLEO-2, CLEO-2.5, CLEO-3	First observation of B decay, charmless and "radiative penguin" B decays
PEP	SLAC	1980-1990(?)				Mark II	
SLC	SLAC	1988-1998(?)	Addition to SLAC Linac	45 Ge∨	45 GeV	SLD, Mark II	First linear collider
LEP	CERN	1989–2000	Circular, 27 km	104 GeV	104 GeV	Aleph, Delphi, Opal, L3	Only 3 light ($m \le m_Z/2$) weakly interacting neutrinos exist, implying only three generations of quarks and leptons
BEPC	China	1989–2004	Circular, 240m	2.2 GeV	2.2 Ge∨	Beijing Spectrometer (I and II) 🗗	
VEPP-4M ₫	BINP, Novosibirsk	1994-	Circular, 366m	6.0 GeV	6.0 GeV	KEDR @	Precise measurement of Y-meson masses
PEP-II	SLAC	1998-2008	Circular, 2.2 km	9 GeV	3.1 GeV	BaBar	Discovery of CP violation in B meson system
КЕКВ	КЕК	1999–2009	Circular, 3 km	8.0 GeV	3.5 GeV	Belle	Discovery of CP violation in B meson system
DAΦNE	Frascati, Italy	1999-	Circular, 98m	0.7 GeV	0.7 GeV	KLOE 🗗	Crab-waist collisions (2007)
CESR-c	Cornell University	2002–2008	Circular, 768m	6 GeV	6 GeV	CHESS, CLEO-c	
VEPP-2000 ₽	BINP, Novosibirsk	2006-	Circular, 24.4m	1.0 GeV	1.0 GeV	SND, CMD-3 🗗	Round beams (2007)
BEPC II	China	2008-	Circular, 240m	3.7 Ge∨	3.7 GeV	Beijing Spectrometer III	

Schöning/Rodejohann

AdA Accelerator

- First e⁺ e⁻ collider ever
- AdA = Anello di Accumulazione (Frascati/Orsay, 1961-64)
- Energy = 250 MeV Electrons x 250 MeV Positrons

AdA Accelerator


- First e⁺ e⁻ collider ever
- AdA = Anello di Accumulazione (Frascati, 1961-64)
- Energy = 250 MeV Electrons x 250 MeV Positrons

Motivation:

• Bruno Touschek: excite the dielectric vacuum to create vector mesons (e.g. rho meson predicted to be light!)

Note: at that time all new particles had been discovered in hadronic interactions (ie. proton beams)!

Dielectric Vacuum

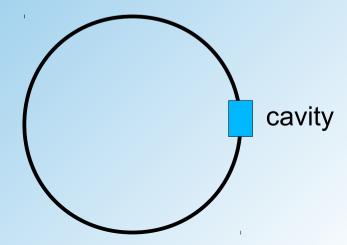
bare electrical charge shielded by induced dipoles bare charge shielded by vacuum polarisation

AdA Accelerator

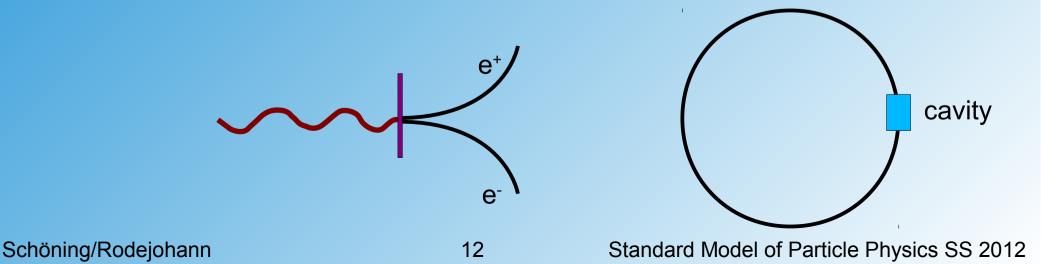
- First e⁺ e⁻ collider ever
- AdA = Anello di Accumulazione (Frascati, 1961-64)
- Energy = 250 MeV Electrons x 250 MeV Positrons

Motivation:

• Bruno Touschek: excite the dielectric vacuum to create vector mesons (e.g. rho meson predicted to be light!)

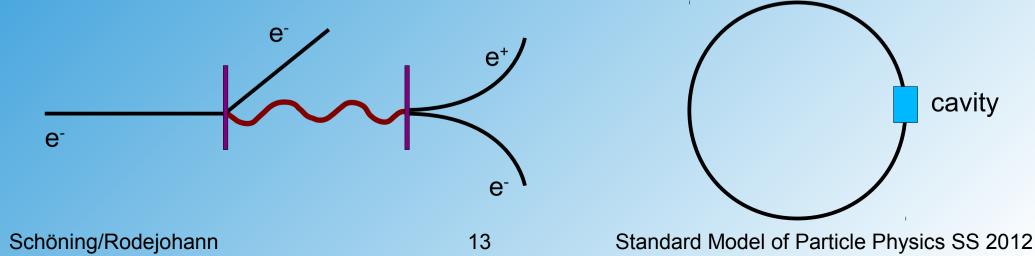

Note: at that time all new particles had been discovered in hadronic interactions (ie. proton beams)!

"Revolutionary" concept as the rho-meson is electrically neutral and was predicted to explain (as carrier) strong interactions

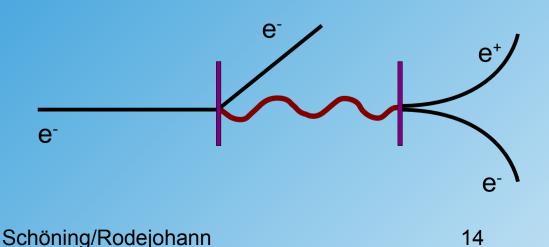

Remark: Indeed, Touschek was right. The strong force can be tested in e⁺ e⁻ collisions. But not in AdA (too low luminosity, too low energy)

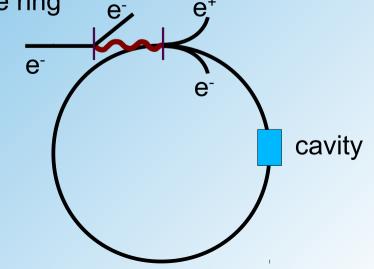
Schöning/Rodejohann

- How to store electrons and positrons?
 - → magneto-optical storage ring (→ known at this time, synchroton radiation facilities)


- How to store electrons and positrons?
 - → magneto-optical storage ring (→ known at this time, synchroton radiation facilities)
- How to produce positrons?
 - → by photon conversions: $\gamma \rightarrow e^+ e^-$ (→ conversion target)

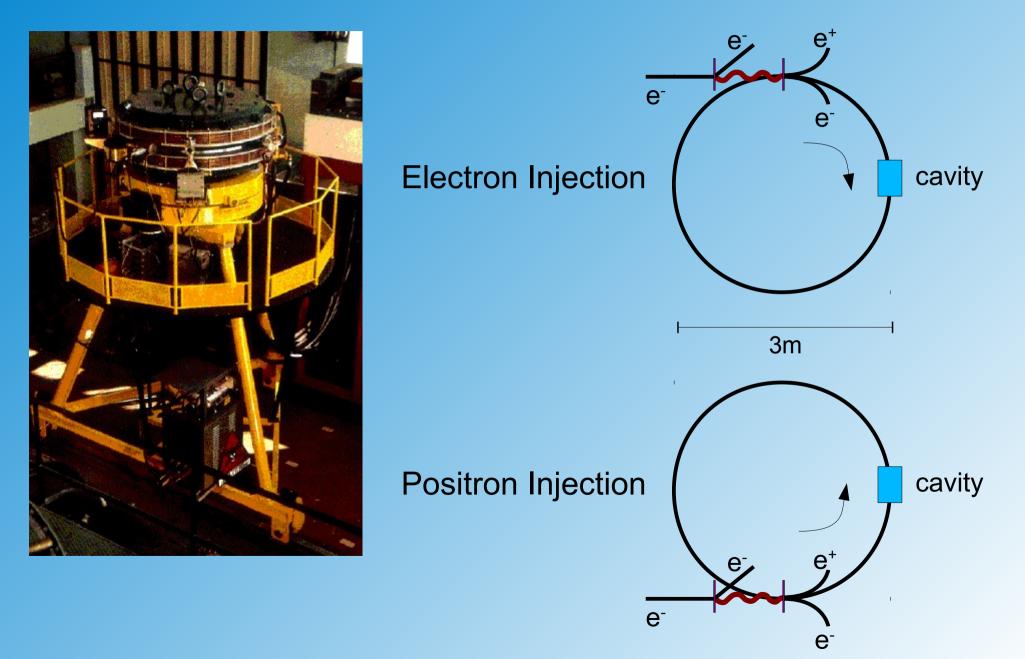
- How to store electrons and positrons?
 - \rightarrow magneto-optical storage ring (\rightarrow known at this time, synchroton radiation facilities)


cavity


- How to produce positrons?
 - → by photon conversions: $\gamma \rightarrow e^+ e^-$ (→ conversion target)
- How to produce the photons (E > 5-10 MeV)
 - Bremsstrahlung from high energetic electrons at target $e^- N \rightarrow \gamma e^- N$ using a linear electron accelerator (\rightarrow also known)

- How to store electrons and positrons?
 - → magneto-optical storage ring (→ known at this time, synchroton radiation facilities)
- How to produce positrons?
 - → by photon conversions: $\gamma \rightarrow e^+ e^-$ (→ conversion target)
- How to produce the photons (E > 5-10 MeV)
 - → Bremsstrahlung from high energetic electrons at target $e^{-} N \rightarrow \gamma e^{-} N$ using a linear electron accelerator (→ also known)
- How to fill the storage ring with electrons and positrons???

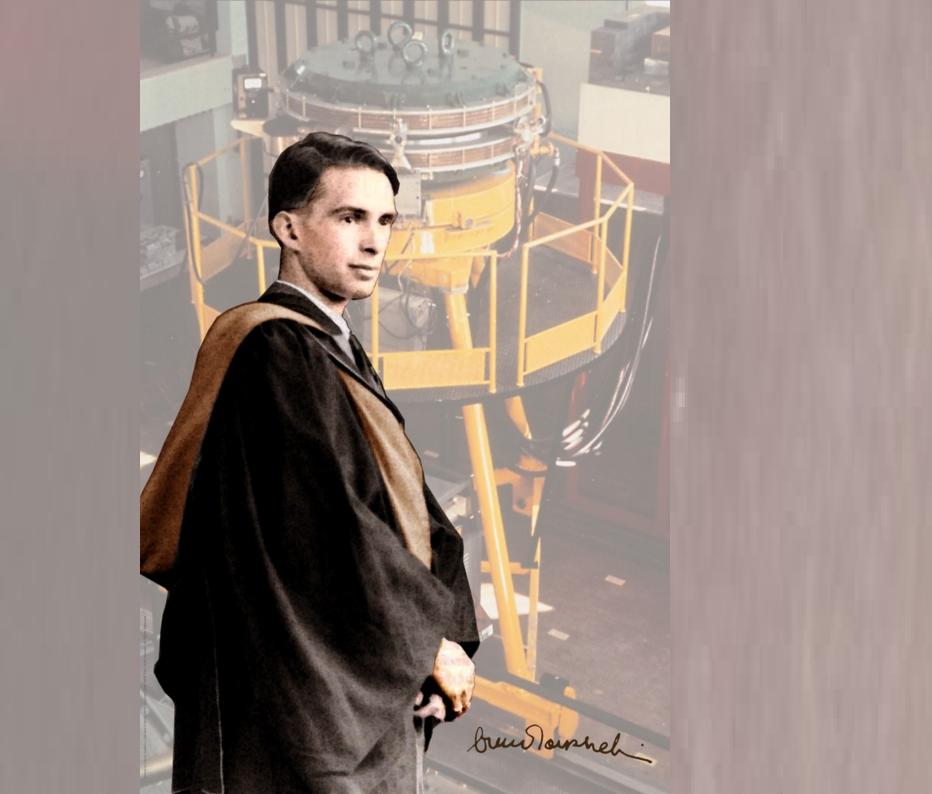
place the conversion target inside the storage ring



MAGNETIC PISCUSSION

brundowsheh.

AdA Concept



Schöning/Rodejohann

How to make electrons and positrons collide?

Note: AdA is a single storage ring: electrons and positrons see same optics but in reverse direction

B.Touschek: It is guaranteed that an electron and a positron necessarily meet in a single orbit because QED is CP (charge-parity)

How to make electrons and positrons collide?

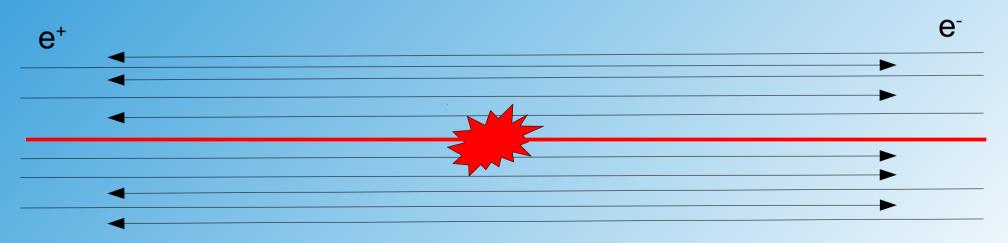
Note: AdA is a single storage ring: electrons and positrons see same optics but in reverse direction

B.Touschek: It is guaranteed that an electron and a positron necessarily meet in a single orbit because QED is CP (charge-parity)

If a ring collider works, then CP(T) invariance of QED is confirmed!!!

Note: CP(T) invariance says that a positron can be regarded as an electron traveling in reverse time direction.

Touschek was right, in a very short time AdA was commissioned and electron-positron collisions were observed – much more than just a technical achievement!


How to measure that electron-positron collisions take place?

How many collisions?

Definition of "Luminosity" Measurement (source factor)

 $R = L \sigma$

Relation between rate of events and cross section of process

Luminosity Measurement in Ring

Accelerator Formula

 $e^+ e^- \rightarrow e^+ e^-$

 $e^+ e^- \rightarrow \gamma \gamma$

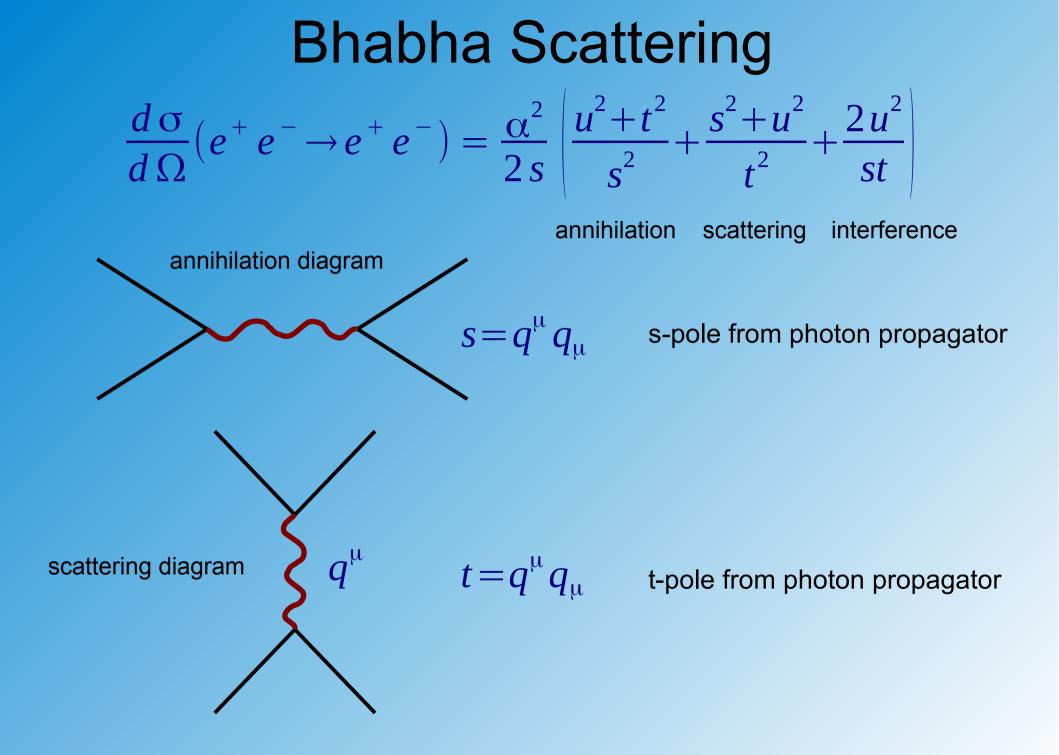
$$L = \frac{N_1 N_2 f}{4 \pi A}$$

 N_1 and N_2 and beam cross section A are unknown and have to be precisely measured \rightarrow difficult

More simple ansatz – use reference process(es):

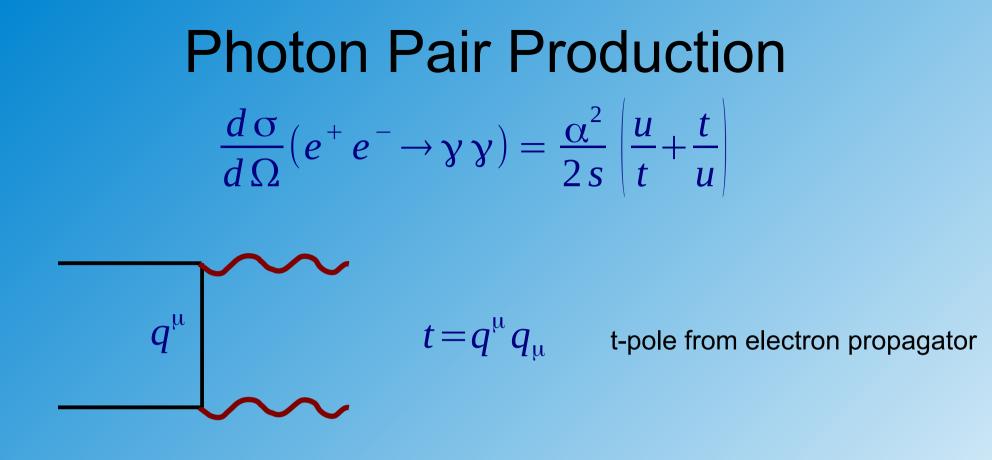
$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{\pi\alpha^2}{s} \left(u^2 \left(\frac{1}{s} + \frac{1}{t}\right)^2 + \left(\frac{t}{s}\right)^2 + \left(\frac{s}{t}\right)^2 \right)$$

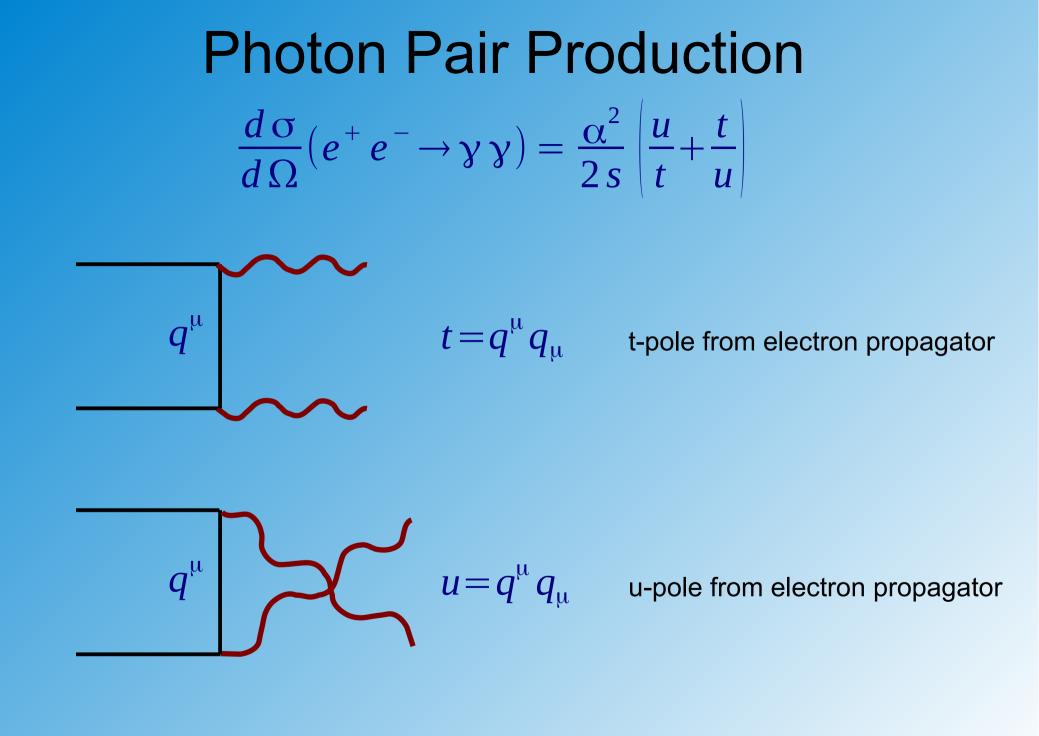
ultrarelativistic approx. (Bhabha 1936)

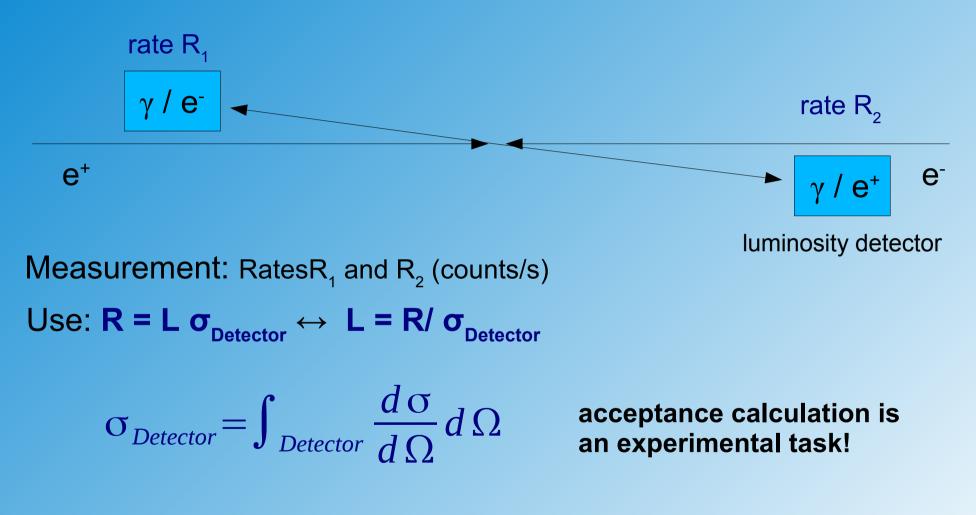

$$\frac{d\sigma}{d\Omega}(e^+e^- \to \gamma\gamma) = \frac{\alpha^2}{2s} \frac{u^2 + t^2}{tu}$$

annihilation process (Compton-like)

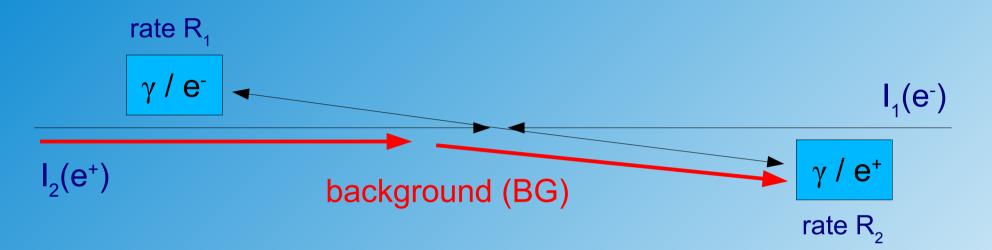
Both processes are forward peaked!


t-pole
$$t = -s \sin^2(\theta/2)$$


Schöning/Rodejohann


Schöning/Rodejohann

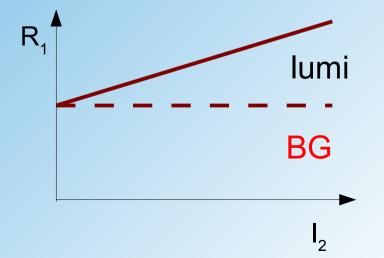
Photon Pair Production $\frac{d\sigma}{d\Omega}(e^+e^- \rightarrow \gamma\gamma) = \frac{\alpha^2}{2s} \left| \frac{u^2 + t^2}{tu} \right|$


Sketch of Luminosity Measurement

 σ_{Detector} is the **observable** cross section \neq total cross cross section

Schöning/Rodejohann

Background for Luminosity Measurement

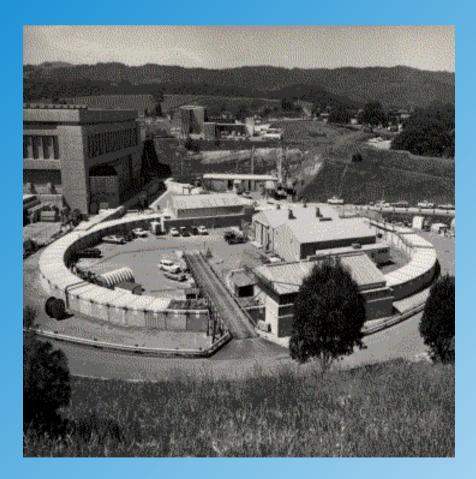


Problem: beam induced background, e.g. electron-rest gas scattering)

Ansatz:

$$R_{1} = a_{1}I_{1} + bI_{1}I_{2} = I_{1}(a_{1}+bI_{2})$$

$$R_{2} = a_{2}I_{2} + bI_{1}I_{2} = I_{2}(a_{2}+bI_{1})$$
BG lumi

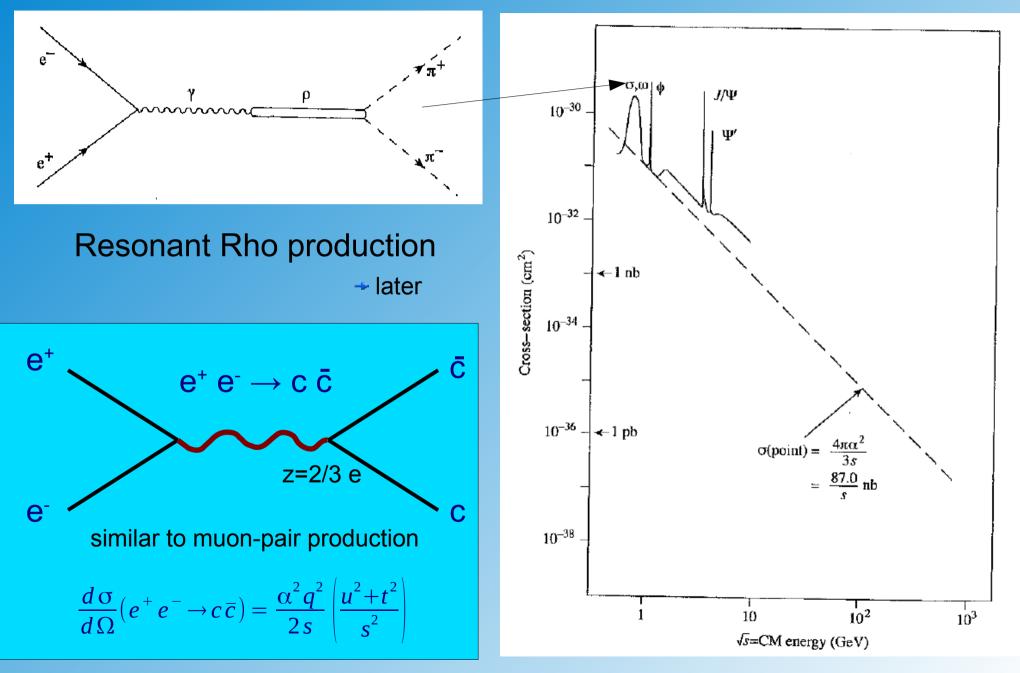

Schöning/Rodejohann

The Big e⁺e⁻ Accelerators

- SPEAR (Stanford Positron Electron Accelerator Ring) at SLAC (1974-1990), s^{1/2}=3-8 GeV, Discovery of the Charm Quark
- PETRA (Positron Electron Tandem Ringanlage) at DESY (1978-1986), s^{1/2}=38 GeV, Discovery of Gluon-Jets
- TRISTAN at KEK, Japan (1986-1989) s^{1/2}=50-64 GeV (discovery of the "desert")
- Large Electron-Positron Collider, Geneva (1988-2000): s^{1/2}=90 GeV (LEP I, Z-factory), s^{1/2}=200 GeV (LEP II, WW factory)
- Stanford Linear Accelerator at SLAC, Stanford (1991-1998) s^{1/2}=90 GeV (SLC, Z-factory)

SPEAR at SLAC

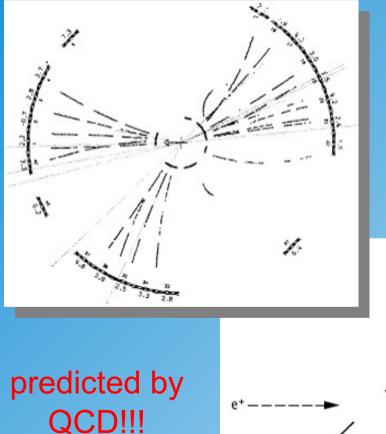
 Stanford Positron Electron Accelerator Ring (1974-1990), s^{1/2}=3-7 GeV, Discovery the J/Psi

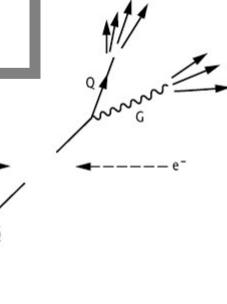

Discovery of the Charm Quark

 $\Psi(2S) \rightarrow J/\Psi \pi^+ \pi^- \rightarrow e^+ e^- \pi^+ \pi^-$

Standard Model of Particle Physics SS 2012

Schöning/Rodejohann

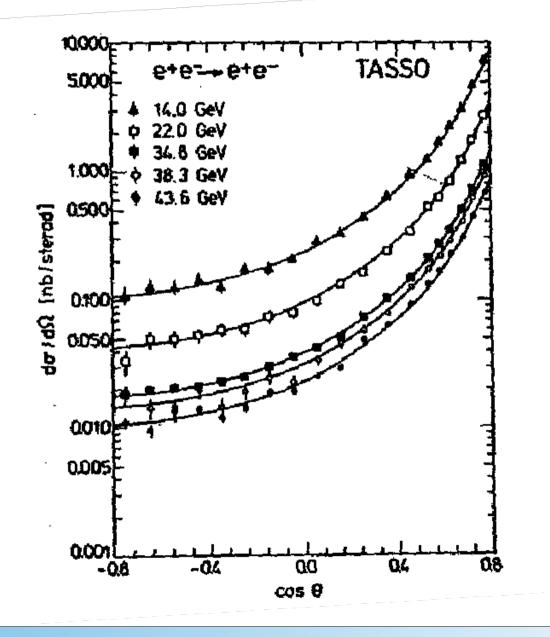

Quark-Pair Production



Schöning/Rodejohann

PETRA at **DESY**

Positron Electron Tandem Ring Anlage (1978-1986), s^{1/2}=38 GeV, Discovery of Gluon Jets


Standard Model of Particle Physics SS 2012

Schöning/Rodejohann

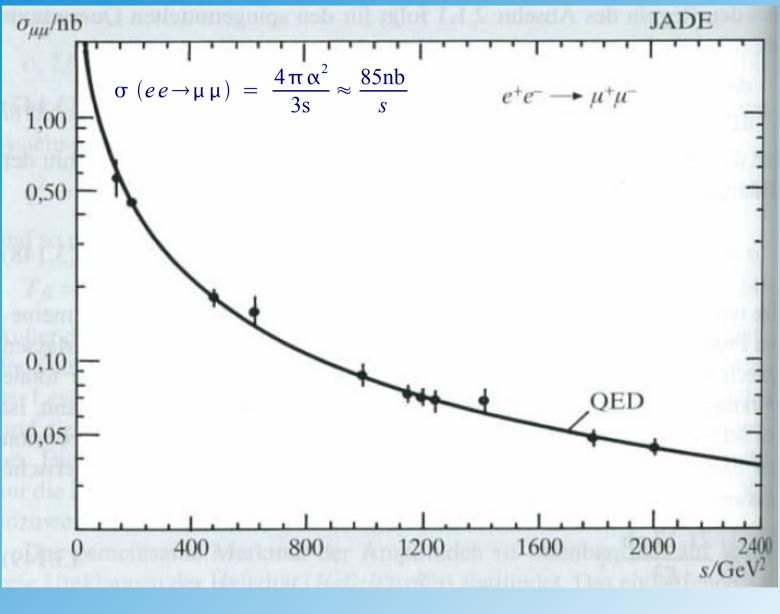
Tasso at PETRA

QED Test:

Bhabha scattering

Schöning/Rodejohann

Total Muon Pair Production C.S.


$$\frac{d\sigma}{dt} = -\frac{2\pi\alpha^2}{s^2} \frac{t^2 + u^2}{s^2} \qquad s + t + u = \sum m_i^2 \approx 0$$
$$\rightarrow u^2 = t^2 + s^2 + 2ts$$

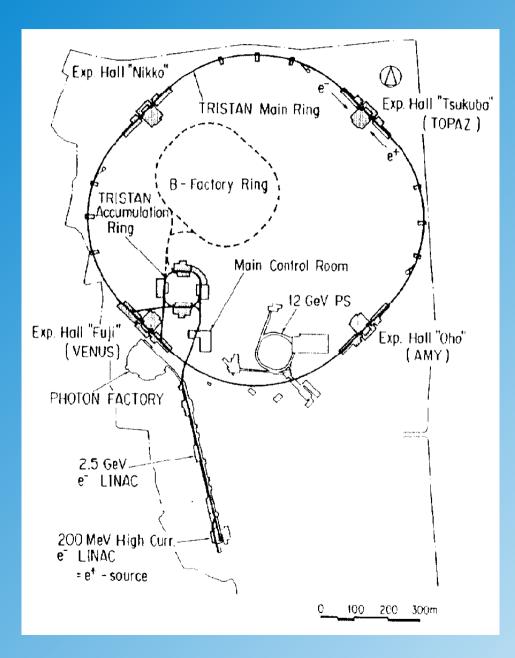
(only two independent)

$$\frac{d\sigma}{dt} = -2\pi\alpha^2 \frac{2t^2 + s^2 + 2ts}{s^4}$$

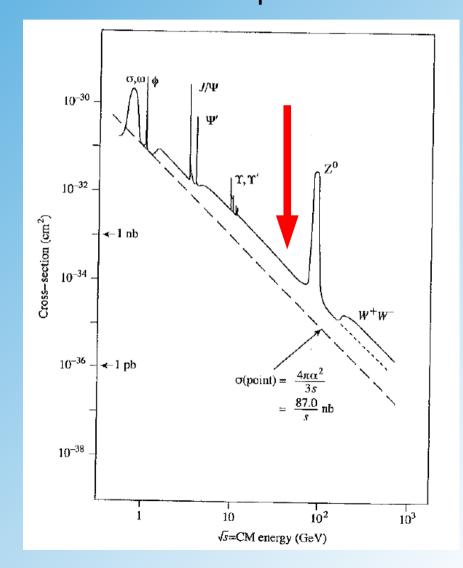
$$\sigma = -\int_{-s}^{0} 2\pi \alpha^{2} \frac{2t^{2} + s^{2} + 2ts}{s^{4}} = -2\pi \alpha^{2} \frac{-2/3s^{3} - s^{3} + s3}{s^{4}} = \frac{4\pi \alpha^{2}}{3s}$$

Myon Pair Production

PETRA accelerator (DESY)

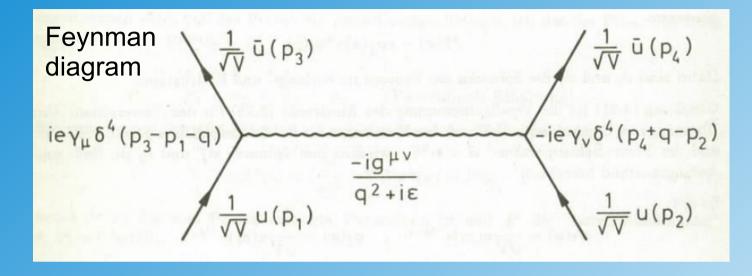

Schöning/Rodejohann

Quark-Pair Production


Difficulty: quarks and antiquarks are exp. difficult to distinguish *W*≈34 GeV 1.5 $t = -\frac{s}{2} \left(1 \mp \cos \theta \right)$ different signs (1/σ) (dσ/d(cosθ)) 10 1 for quarks and $u = -\frac{s}{2} (1 \pm \cos \theta)$ antiquarks quarks and $t^2 + u^2 = -\frac{s}{2} \left(1 + \cos^2\theta\right)$ antiquarks averaged! **TASSO (1984)** e^+ 0.5 $e^+ e^- \rightarrow c \ \bar{c}$ 0.2 0.4 0.6 0.8 0 icos θi z=2/3 e e similar to muon-pair production $\frac{d\sigma}{d\Omega}(e^+e^- \to c\,\overline{c}) = \frac{\alpha^2 q^2}{2s} \left(\frac{u^2 + t^2}{s^2}\right)$

Schöning/Rodejohann

Tristan Collider at KEK


1986-1989: s^{1/2}=50-64 GeV Search for the top in the "desert"

Standard Model of Particle Physics SS 2012

Schöning/Rodejohann

QED Tests in e⁺e⁻ collisions

Possible tests:

- universality of charges (leptons, quarks, ...)
- energy dependence of coupling ("running")
- test of perturbation theory
- Lorentz structure of coupling
- propagator effect \rightarrow new physics
- Lest crossing symmetries (→ gauge invariance)

Measurement of R_{had}

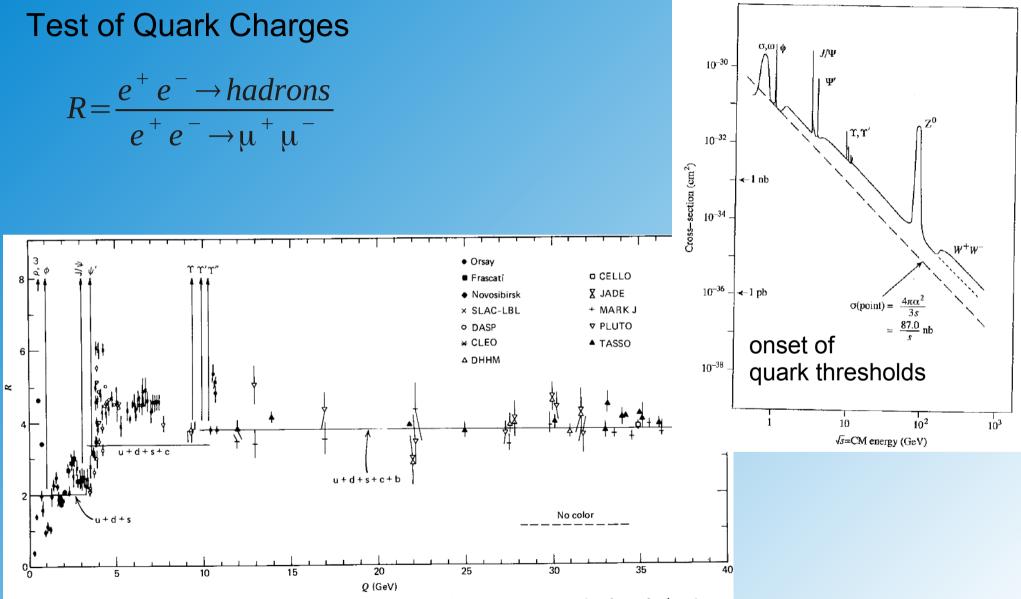
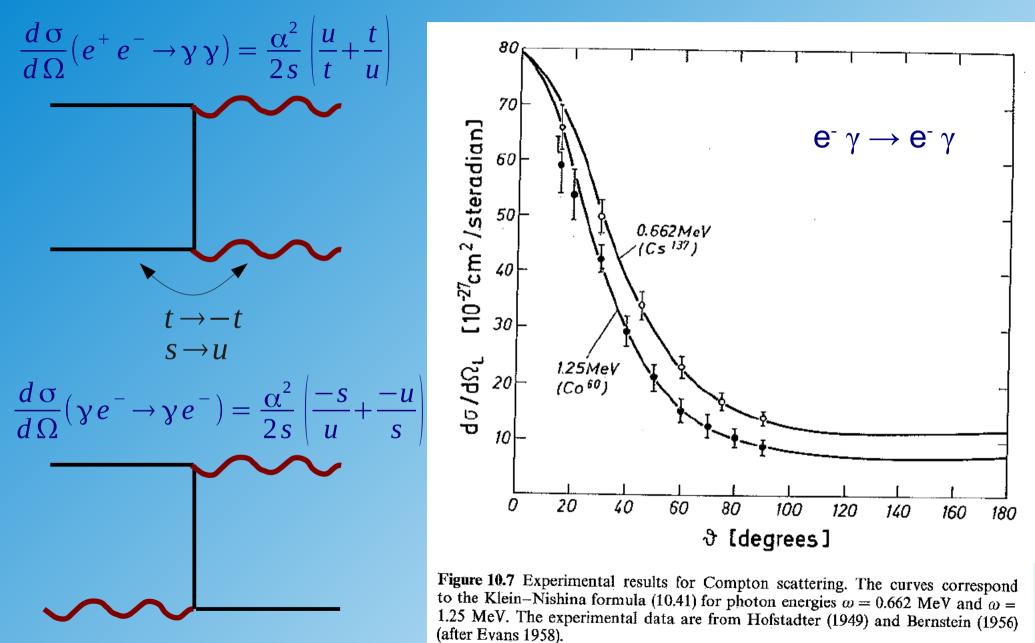
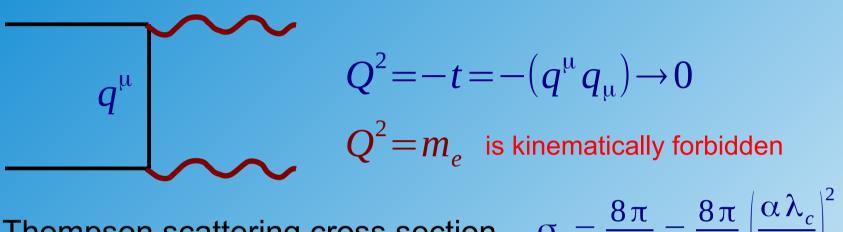



Fig. 11.3 Ratio R of (11.6) as a function of the total e^-e^+ center-of-mass energy. (The sharp peaks correspond to the production of narrow 1^- resonances just below or near the flavor thresholds.)

Schöning/Rodejohann


Crossing Symmetries

Schöning/Rodejohann

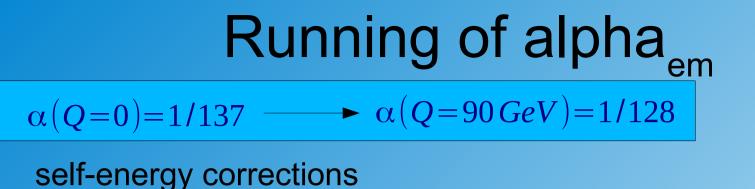
The Low Energy Limit

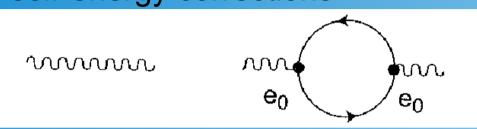
Electromagnetic coupling at low energy:


Thompson scattering cross section

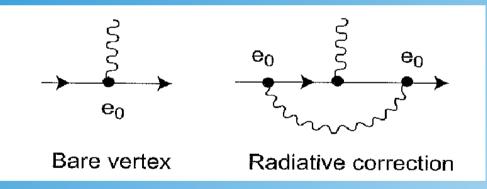
$$\sigma_t = \frac{8\pi}{3r_e^2} = \frac{8\pi}{3} \left(\frac{\alpha\lambda_c}{2\pi}\right)^2$$

used to determine $\boldsymbol{\alpha}$


The Low Energy Limit


Electromagnetic coupling at low energy:

General cross section:


$$e^{\star} \qquad \frac{d\sigma}{d\Omega}(\gamma e^{-} \rightarrow \gamma e^{-}) = \frac{\alpha^{2}}{2s} \left| \frac{-s}{u} + \frac{-u}{s} \right|$$

alpha is not a constant!

vertex corrections

dressed charge!

measure em. coupling for different (high) energies

search for new physics effects at mass scale Λ

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma(QED)}{d\Omega} \left| 1 + \frac{s}{\Lambda^2} \right|$$

Schöning/Rodejohann

Lorentz-Structure of Electromagnetic Interaction

From Maxwell Equations:

 $\partial_{\mathbf{v}} \partial^{\mathbf{v}} A^{\mu}(x) = e J^{\mu}(x)$ in QED: $\partial_{\mu} j^{\mu}_{V} = 0$ (conservation of currents)

electromagnetic interaction described by vector currents! Also true at high energies?

Vector Current: $j^{\mu}_{V} = \bar{\psi} \gamma^{\mu} \psi$

Axial-vector Current: $j^{\mu}_{A} = \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ scalar coupling: $\lambda = \overline{\psi} \psi$

pseudoscalar coupling: $\lambda = \bar{\psi} \gamma^5 \psi$

Iead in genreral to different angular distributions!

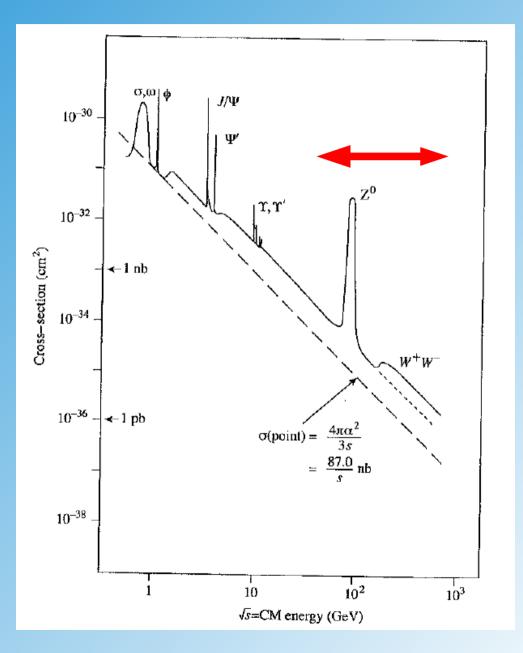
LEP Collider

biggest electron-positron collider with up to 200 GeV centre of mass

4 experiments: ALEPH, DELPHI, L3, OPAL

LEP1: "Z-factory"

LEP2: "WW factory"


LEP Regime

Processes:

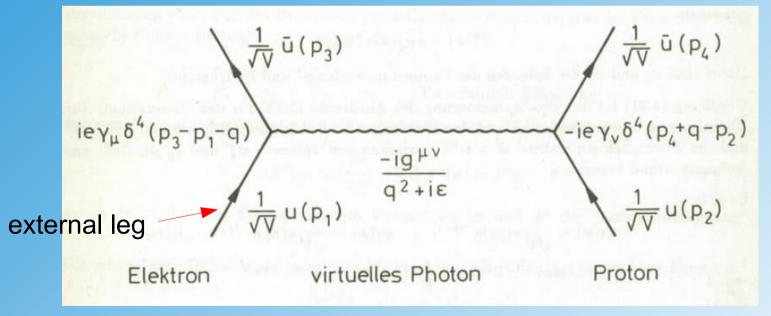
 $e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \to Z$

 $e^+ e^- \rightarrow W^+ W^-$

at LEP energies radiative effects play an important role!

International Linear Collider

500 GeV electrons x 500 GeV positrons


Schöning/rcouejonann-

Backup

Fermion-Fermion Scattering

$$S_{fi}^{(1)} = ie^2 \int \frac{d^4q}{(2\pi)^4} \,\delta^4(p_3 - p_1 - q) \,\delta^4(p_4 + q - p_2) \,(2\pi)^8$$
$$\cdot \frac{1}{V^2} \overline{u}(p_3) \gamma_\mu u(p_1) \cdot \frac{-g^{\mu\nu}}{q^2 + i\epsilon} \cdot \overline{u}(p_4) \gamma_\nu u(p_2)$$

particle-particle (here electron-proton) scattering

lowest oder perturbation theory: leading order graph (Born)

Schöning/Rodejohann

Gamma Matrices I

Gamma matrices γ^{μ} are chosen such that γ^{0} is hermitian while γ^{k} (k=1,2,3) are anti-hermitian

$$(\gamma^0)^+ = \gamma^0, \ (\gamma^0)^\mu = 1,$$

 $(\gamma^k)^+ = -(\gamma^k), \ (\gamma^k)^\mu = -1 \ (k=1,2,3)$

We define γ^5 as the hermitian matrix: $\gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3$, $(\gamma^5)^2 = 1$,

The 4x4 gamma matrices can be represented by (representation where γ^0 is diagonal):

$$\gamma^{k} = \begin{pmatrix} 0 & \underline{\sigma}^{k} \\ -\underline{\sigma}^{k} & 0 \end{pmatrix}, \quad \gamma^{0} \stackrel{\text{def}}{=} \beta = \begin{pmatrix} \underline{1} & 0 \\ 0 & -\underline{1} \end{pmatrix}, \quad \gamma^{5} = \begin{pmatrix} 0 & \underline{1} \\ \underline{1} & 0 \end{pmatrix}$$
(note several representations exist)

With the 2x2 Pauli matrices:

$$\underline{\sigma}^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \underline{\sigma}^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \underline{\sigma}^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Gamma matrices anti-commute: $\gamma^i \gamma^k + \gamma^k \gamma^i = 0$ for $i \neq k$

Gamma Matrices II

$$\begin{split} \boldsymbol{\gamma}^{0} &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \\ \boldsymbol{\gamma}^{1} &= \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{\gamma}^{2} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \qquad \boldsymbol{\gamma}^{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \end{split}$$

$$\gamma^{5} = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix}$$

(in other representations g is diagonal)

Schöning/Rodejohann