

Standard Model of Particle Physics

Heidelberg SS 2013

(Weak) Neutral Currents

Schöning/Rodejohann

Contents

- Theoretical Motivation for Neutral Currents
- NC Processes
- Experimental Discovery
- Measurement of the Weinberg Angle
- NC Fermion couplings

Recap: Weinberg-Salam Theory

Left handed fermions (doublets): $\Psi_1 = \begin{bmatrix} \mathbf{v}_e \\ e^- \end{bmatrix}_L \begin{bmatrix} \mathbf{v}_\mu \\ \mu^- \end{bmatrix}_L \begin{bmatrix} \mathbf{v}_\tau \\ \tau^- \end{bmatrix}_L \begin{bmatrix} u \\ d^- \end{bmatrix}_L \begin{bmatrix} c \\ s^- \end{bmatrix}_L \begin{bmatrix} t \\ b^- \end{bmatrix}_L$

Right handed $\psi_2 =$ $\mathbf{v}_{e,R}$ $\mathbf{v}_{\mu,R}$ $\mathbf{v}_{\tau,R}$ u_R c_R t_R fermions (singlets): $\psi_3 =$ $e_R^ \mu_R^ \tau_R^ d_R$ s_R b_R

Gauge Transformations: $\psi_j(x) \rightarrow \psi'_j(x) = \exp(i\vec{\alpha}(x)\frac{\vec{\tau}}{2}) \cdot \exp(i\beta(x)\frac{Y_j}{2})\psi_j(x)$ U(1) SU(2) τ: Pauli matrices Y_i: hypercharge

Smallest gauge group representation with >1 gauge boson is SU(2):

W⁺, W⁻ representated by

additional W₃ field represented by: τ_3 (\rightarrow 4th gauge boson)

Schöning/Rodejohann

 $\tau^{\pm} = \frac{1}{2} \left(\tau_1 \pm i \tau_2 \right)$

Recap: Weinberg-Salam Theory

Left handed fermions (doublets): $\psi_1 = \begin{pmatrix} \mathbf{v}_e \\ e^- \end{pmatrix}_L \begin{pmatrix} \mathbf{v}_\mu \\ \mu^- \end{pmatrix}_L \begin{pmatrix} \mathbf{v}_\tau \\ \tau^- \end{pmatrix}_L \quad \begin{pmatrix} u \\ d^- \end{pmatrix}_L \begin{pmatrix} c \\ s^- \end{pmatrix}_L \begin{pmatrix} t \\ b^- \end{pmatrix}_L$

Right handed $\psi_2 =$ $\mathbf{v}_{e,R}$ $\mathbf{v}_{\mu,R}$ $\mathbf{v}_{\tau,R}$ u_R c_R t_R fermions (singlets): $\psi_3 =$ $e_R^ \mu_R^ \tau_R^ d_R$ s_R b_R

Note:

- SU(2) fields W₁, W₂, W₃, and U(1) field B (hypercharge) correspond to massless bosons!
- fields W₃ (V-A coupling) and B (hypercharge) can/do **mix**!

Electroweak Symmetry Breaking

$$\begin{pmatrix} Z \\ A \end{pmatrix} = \begin{pmatrix} \cos \theta_W & -\sin \theta_W \\ \sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} W_3 \\ B \end{pmatrix} \iff \begin{pmatrix} W_3 \\ B \end{pmatrix} = \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} Z \\ A \end{pmatrix}$$

$$L_{ew} = g j_L^3 W_3 + \frac{1}{2} g' j^Y B$$

$$\downarrow \text{ symmetry breaking}$$

$$L_{elm} = g j_L^3 \sin \theta_W A + \frac{1}{2} g' j^Y \cos \theta_W A$$

$$L_{NC} = g j_L^3 \cos \theta_W Z - \frac{1}{2} g' j^Y \sin \theta_W Z$$

Schöning/Rodejohann

Electromagnetic Interaction

$$L_{elm} = g j_L^3 \sin \theta_W A + \frac{1}{2} g' j^Y \cos \theta_W A$$

Left-Handed Current:

Pauli matrix
$$\tau_3$$
: $\tau_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $j_L^3 = \frac{1}{2} (\bar{U}_L U_L - \bar{D}_L D_L)$

Hypercharge Current:

isospin up isospin down

$$j_{Y} = \overline{\psi} \, \hat{Y} \, \psi = Y_{doublet} \, \overline{U}_{L} \, U_{L} + \, Y_{doublet} \, \overline{D}_{L} \, D_{L} + \, Y_{singlet} \, \overline{D}_{R} \, D_{R}$$

only "down" component here (leptons)!

Photon field: vector current and coupling to electric charges: 1. $e = g \sin \theta_W = g' \cos \theta_W \qquad \rightarrow \qquad j_{elm} = j_L^3 + \frac{1}{2} j^Y \rightarrow Q = I + \frac{1}{2} Y$ 2. Leptons: $Y_{doublet} = -1$, $Y_{singlet} = -2 \rightarrow j_{elm} = -\overline{D}_L D_L - \overline{D}_R D_R$ (e, μ , τ) 3. Quarks: $Y_{doublet} = \frac{1}{3}$, $Y_{u-singlet} = \frac{4}{3}$, $Y_{d-singlet} = -\frac{2}{3}$

Schöning/Rodejohann

Weinberg angle! Schöning/Rodejohann

no pure V-A coupling

for non-zero

Ζ

 $\frac{ig\gamma^{\mu}}{2}\frac{1}{2}(C_{V}-C_{A}\gamma_{5})$

 ∞

– C

$$\frac{g}{\partial s \theta_{W}} \cos^{2} \theta_{W} \propto g' \sin \theta_{W} = \left(\frac{g}{\cos \theta_{W}}\right) \sin^{2} \theta_{W}$$

$$(j_{NC})^{\mu} = \overline{\Psi} \gamma^{\mu} \frac{1}{2} [c_{L}(1-\gamma^{5})+c_{R}(1+\gamma^{5})] \Psi_{e}$$

$$I_{3}=-1/2 \qquad I_{3}=+1/2$$

$$c_{L}= -1/2-Q_{f} \sin^{2} \Theta_{W} + 1/2-Q_{f} \sin^{2} \Theta_{W}$$

$$c_{R}= -Q_{f} \sin^{2} \Theta_{W}' -Q_{f} \sin^{2} \Theta_{W}'$$

$$(j_{NC}^{e})^{\mu} = \overline{\Psi}_{e} \gamma^{\mu} \frac{1}{2} (C_{V}-C_{A} \gamma_{5}) \Psi_{e}$$

$$I_{3}=-1/2 \qquad I_{3}=+1/2$$

$$C_{A}= -1/2 \qquad H_{2}=-1/2 \qquad H_{2}=+1/2$$

$$C_{V}= -1/2'-2Q_{f} \sin^{2} \Theta_{W} + 1/2'-2Q_{f} \sin^{2} \Theta_{W}$$

Standard Model of Particle Physics SS 2013

Weak Neutral Current

 $L_{NC} = g j_L^3 \cos \theta_W Z - \frac{1}{2} g' j^Y \sin \theta_W Z$

Unitarity in SU(2) Gauge Group

Recall:

Unitarity in SU(2) Gauge Group

Fermion W-boson Scattering

$$\sigma(e^-e^+ \rightarrow W_0^- W_0^+) \propto G_F^2 s$$

divergent high energy behavior of longitudinal $(J_3=0)$ spin component

fixed by introducing the Z boson (predicted by non-abelian SU(2))

General Rule (1970, t'Hooft, Veltmann):

UV-divergences vanish only in gauge invariant theories

Neutrino-Nucleon Scattering Experiments

Experimental Discovery of NC

in early 70ties bubble chambers where used to study particle interactions

- reconstruction of all charged particles!
- problem: low repetition rate, difficult analysis

Schöning/Rodejohann

BEBC principle

BEBC (CERN, 1967-1984)

Heidelberg -Saclay-CERN

6.3 million photographs

Standard Model of Particle Physics SS 2013

Neutrino-Proton Scattering (Charged Current)

Schöning/Rodejohann

Gargamelle

Liquid: freon (CF3Br).

Standard Model of Particle Physics SS 2013

Cross Section of Experiment

Side view

Schöning/Rodejohann

Eleastic Neutral Current ve→ve

Schöning/Rodejohann

Discovery of Neutral Currents

SEARCH FOR ELASTIC MUON-NEUTRINO ELECTRON SCATTERING

F.J. HASERT, H. FAISSNER, W. KRENZ, J. Von KROGH, D. LANSKE, J. MORFIN, K. SCHULTZE and H. WEERTS III Physikalisches Institut der technischen Hochschule, Aachen, Germany

G.H. BERTRAND-COREMANS, J. LEMONNE, J. SACTON, W. Van DONINCK and P. VILAIN^{*}1 Interuniversity Institute for High Energies, U.L.B., V.U.B. Brussels, Belgium

C. BALTAY^{*2}, D.C. CUNDY, D. HAIDT, M. JAFFRE, P. MUSSET, A. PULLIA^{*3} S. NATALI^{*4}, J.B.M. PATTISON, D.H. PERKINS^{*5}, A. ROUSSET, W. VENUS^{*6} and H.W. WACHSMUTH *CERN, Geneva, Switzerland*

V. BRISSON, B. DEGRANGE, M. HAGUENAUER, L. KLUBERG, U. NGUYEN-KHAC and P. PETIAU Laboratoire de Physique des Hautes Energies, Ecole Polytechnique, Paris, France

E. BELLOTTI, S. BONETTI, D. CAVALLI, C. CONTA^{*7}, E. FIORINI and M. ROLLIER Istituto di Fisica dell 'Università, Milano and I.N.F.N. Milano, Italy

B. AUBERT, L.M. CHOUNET, P. HEUSSE, A. LAGARRIGUE, A.M. LUTZ and J.P. VIALLE Laboratoire de l'Accélérateur Linéaire, Orsay, France

and

F.W. BULLOCK, M.J. ESTEN, T. JONES, J. McKENZIE, A.G. MICHETTE^{*8} G. MYATT^{*5}, J. PINFOLD and W.G. SCOTT^{*5}, ^{*8} University College, University of London, England

Table 1 Number of single e ⁻ events of $E_e > 300$ MeV, $\theta_e < 5^\circ$					
		Weinberg predictions		Background	Observed
Flux neutrinos/m ²		Mini- mum	Maxi- mum		
v	1.8×10^{15}	0.6	6.0	0.3 ± 0.2	0
$\overline{\dot{\nu}}$	1.2×10^{15}	0.4	8.0	0.03 ± 0.02	1

 $0.1 < \sin^2\theta_{\rm W} < 0.6.$

Schöning/Rodejohann

20

Hasert et al.

Fig. 2. Expected event rate as a function of the Weinberg parameter.

Classification of Inelastic Events

Hadronic neutral current reaction

÷

1)

Pr

十四

NC/CC Ratio

Neutrino-Nucleon Scattering

Anti-neutrino Beam

Fig. 1. Distributions along the ν -beam axis. a) NC events in ν . b) CC events in ν (this distribution is based on a reference sample of ~ 1/4 of the total ν film). c) Ratio NC/CC in ν (normalized). d) NC in $\overline{\nu}$. e) CC events in $\overline{\nu}$. f) Ratio NC/CC in $\overline{\nu}$. g) Measured neutron stars with 100 < E < 500 MeV having protons only. h) Computed distribution of the background events from the Monte-Carlo.

Standard Model of Particle Physics SS 2013

R-Measurements in Gargamelle

Neutrino-Nucleon Scattering $NC(\nu) = 88.2$ events, $NC(\overline{\nu}) = 45.3$ events. $CC(\overline{\nu}) = 104.5$ events. $CC(\nu) = 403$ events; Finally we obtain the ratios: $\frac{\mathrm{NC}}{\mathrm{CC}}(\overline{\nu}) = 0.43 \pm 0.12 \; .$ $\frac{NC}{CC}(\nu) = 0.22 \pm 0.04;$ NC event in every ~1000th film

Signatures in CHARM Experiment

Drift Chambers:

charged currents

neutral currents

Schöning/Rodejohann

Neutrino-Electron Scattering

$$\frac{d\sigma^{ve}(NC)}{dy} = \frac{2G^2mE}{\pi} [g_L^2 + g_R^2(1-y)^2],$$

and similar for anti-neutrinos

possible to determine couplings and Weinberg angle from different reactions

Schöning/Rodejohann

Lepton Couplings

$$I_{3} = -1/2$$

$$C_{A} = -1/2$$

$$C_{V} = -1/2' - 2Q_{f} \sin^{2} \Theta_{W}$$

compilation of several experiments (Wu)

Schöning/Rodejohann

Deep Inelastic Neutrino-Lepton Scattering and Weinberg Angle

$$\frac{d^2\sigma^{\nu N}(\mathrm{CC})}{dx\,dy} = \frac{G^2MEx}{2\pi} \left[u(x) + d(x)\right],$$

$$\frac{d^2 \sigma^{\bar{v}N}(CC)}{dx \, dy} = \frac{G^2 MEx}{2\pi} \left[u(x) + d(x) \right] (1-y)^2.$$

$$R = \frac{\sigma^{\nu N}(\text{NC})}{\sigma^{\nu N}(\text{CC})} = \frac{1}{2} - \sin^2 \theta_w + \frac{20}{27} \sin^4 \theta_w,$$
$$\bar{R} = \frac{\sigma^{\bar{\nu}N}(\text{NC})}{\sigma^{\bar{\nu}N}(\text{CC})} = \frac{1}{2} - \sin^2 \theta_w + \frac{20}{9} \sin^4 \theta_w,$$

Geweniger 1984:

$$\sin^2 \theta_w = 0.223 \pm 0.010$$

Standard Model of Particle Physics SS 2013

Lorentz Invariant Kinematics of the Deep Inelastic Scattering Process

with cms energy: S = 2 p P

HERA NC (CC) Cross Sections

Difference between e⁺p and e⁻p cross section due to electroweak (c_∨, c_A) Z-boson couplings

DIS Structure Functions at HERA

Deep Inelastic Scattering for **e**[±]**p** described by:

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{NC}}^{\pm}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} (Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L)$$

Generalised functions F_2 and F_3 :

$$\tilde{F}_{2}^{\pm} = F_{2} - (v_{e} \pm P_{e}a_{e})\kappa \frac{Q^{2}}{Q^{2} + M_{Z}^{2}}F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2} \pm P_{e}2v_{e}a_{e})\kappa^{2} \left[\frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right]^{2}F_{2}^{Z}$$
$$x\tilde{F}_{3}^{\pm} = -(a_{e} \pm P_{e}v_{e})\kappa \frac{Q^{2}}{Q^{2} + M_{Z}^{2}}xF_{3}^{\gamma Z} + (2a_{e}v_{e} \pm P_{e}[v_{e}^{2} + a_{e}^{2}])\kappa^{2} \left[\frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right]^{2}xF_{3}^{Z}$$

Structure Functions F_2 and F_3 :

with
$$\kappa^{-1} = 4 \frac{M_W^2}{M_Z^2} (1 - \frac{M_W^2}{M_Z^2})$$

$$\begin{bmatrix} F_2, F_2^{\gamma Z}, F_2^Z \end{bmatrix} = x \sum_q [e_q^2, 2e_q v_q, v_q^2 + a_q^2](q + \bar{q})$$
$$\begin{bmatrix} x F_3^{\gamma Z}, x F 3^Z \end{bmatrix} = 2x \sum_q [e_q a_q, v_q a_q](q - \bar{q}) ,$$

Schöning/Rodejohann

Summary

 Neutral Currents = Virtual exchange of Z-boson discovered with the Gargamelle experiment in 1973

- Electroweak Symmetry Breaking:
- Triplet field W couples to left handed particles (V-A)
- Singlet field B couples to hypercharge
- parity violation fields W_3 and B are broken into Z and A field
- The Photon field is massless and parity conserving (V-coupling)
- The Z-field has V and A couplings depending on fermion type
- Electroweak Symmetry Breaking needs Higgs field to explain masses of W and Z particles $m_Z = \frac{m_W}{\cos \theta_W} \sim 90 \, GeV$
- Masses of W and Z particles ~ 100 GeV, precise determination in resonant production (LEP → Wednesday)