

Standard Model of Particle Physics

Heidelberg SS 2013

Fermi Theory

Schöning/Rodejohann

1

ETH

Eidgenössische Technische Hechschule Zürich Swiss Federal Institute of Technology Zurich

Particle Physics

Particle Physics Practical Course at the Paul Scherrer Institute (PSI, Switzerland) in Summer 2013

What's up ?

- · During the semester break in summer we perform at the Paul Scherrer Institute (Switzerland) a real beam-line experiment to teach students in experimental particle physics.
- About 10-12 students from the ETH Zurich and the Universities Zurich and Heidelberg spend two to three weeks at PSI to perform an experiment. The course includes lectures about several topics of experimental techniques. Main emphasis, however, is put on the practical work and "hands on".
- Students plan and construct a small experiment from unused detector components. After commissioning the real fun starts: data taking all day and night (7/24) using one of the beamlines at PSI. During and after data taking a full analysis of the data is performed and summarised in a written document.

Examples from previous measurements:

- Branching Ratio: $B(\pi \rightarrow \mu \upsilon)/B(\pi \rightarrow e \upsilon)$.
- Panofski Ratio: $B(\pi p \rightarrow n\pi)/B(\pi p \rightarrow n\gamma)$
- Lifetimes and decay parameters of muons and pions

Date of next course:

26. August - 13. September 2013

Contact Persons:

A.Schöning: schoning@physi.uni-heidelberg.de C.Grab: grab@phys.ethz.ch P.Robmann: peter@physik.uzh.ch

Limited number of places, please register!

This course (MVPSI) is part of the Master Programme at the Faculty of Physics and Astronomy in Heidelberg!

06/02/13 / A.Schöning

Weak Force

Nuclear beta decay (+fission)

Standard Model of Particle Physics SS 2013

Fermi Theory

• Unified description of all kind of beta decays?	Isotop	Halbwert- zeit
→ nuclear decays		
muon and pion decay	¹ n 35 _S	11,7 m 87 d
decay of strange hadrons and heavy quarks	¹⁹⁸ Au 91 _V	2,7 d
	¹³⁷ Cs	30 a
Description of weak scattering processes?	⁸⁷ Rb ¹¹⁵ In	6 x 10 ¹⁰ a 6 x 10 ¹⁴ a
at low energy		

at high energy

Lagrangian (independent of energy)

$$L = \frac{G}{\sqrt{2}} \left(\overline{f} \Gamma f' \right) \left(\overline{f''} \widetilde{\Gamma} f''' \right)$$

most general ansatz for operator Γ :

Vector Current: $j_{V}^{\mu} = \bar{\psi} \gamma^{\mu} \psi$ Axial-vector Current:

 $j^{\mu}_{A} = \bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi$

scalar coupling: $\lambda = \overline{\psi} \psi$ pseudoscalar coupling:

 $\lambda = \bar{\psi} \gamma^5 \psi$

Tensor Coupling $\sigma_{A}^{\mu\nu} = \bar{\psi}(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})\psi$

Vector Current conservation

 $\overline{u} \gamma^{\mu} u = \overline{u_L} \gamma^{\mu} u_L + \overline{u_R} \gamma^{\mu} u_R \quad \text{(no helicity flip)}$

Scalar Coupling

 $\overline{u} u = \overline{u_R} u_L + \overline{u_L} u_R \qquad \text{(helicity flip!)}$

Vector Current conservation

 $\overline{u} \gamma^{\mu} u = \overline{u_L} \gamma^{\mu} u_L + \overline{u_R} \gamma^{\mu} u_R \quad \text{(no helicity flip)}$

Scalar Coupling

 $\overline{u}u = \overline{u_R}u_L + \overline{u_L}u_R \qquad \text{(helicity flip!)}$

What is the difference between helicity and chirality?

Vector Current conservation

 $\overline{u} \gamma^{\mu} u = \overline{u_L} \gamma^{\mu} u_L + \overline{u_R} \gamma^{\mu} u_R \quad \text{(no helicity flip)}$

Scalar Coupling

 $\overline{u} u = \overline{u_R} u_L + \overline{u_L} u_R \qquad \text{(helicity flip!)}$

What is the difference between helicity and chirality? What is the difference between helicity and polarisation?

Vector Current conservation

 $\overline{u} \gamma^{\mu} u = \overline{u_L} \gamma^{\mu} u_L + \overline{u_R} \gamma^{\mu} u_R \quad \text{(no helicity flip)}$

Scalar Coupling

 $\overline{u} u = \overline{u_R} u_L + \overline{u_L} u_R \qquad \text{(helicity flip!)}$

What is the difference between helicity and chirality? What is the difference between helicity and polarisation? What is the difference between helicity flip and spin flip?

Energy dependence of electromagnetic interaction:

Schöning/Rodejohann

Standard Model of Particle Physics SS 2013

S

3-Body Decay

Fermi's Golden rule:

$$dN(p) dp = 2\frac{\pi}{\hbar} \left| \left\langle f \left| H \right| i \right\rangle \right|^2 \frac{dn}{dE_0} \quad \text{with:} \quad \left| H_{fi} \right|^2 = \left| \left\langle f \left| H \right| i \right\rangle \right|^2 = const$$

Phase space:
$$\frac{dn}{dE_0} = \frac{V^2}{4\pi^4 \hbar^4} p_e^2 dp_e p_v^2 dp_v \frac{1}{dE_0}$$

Beta Spectrum:

$$dN(\eta) \ d\eta = |H_{fi}|^2 \ \eta^2 (\epsilon_0 - \epsilon)^2 \ d\eta \qquad \text{with:} \qquad \begin{array}{l} \eta = p_e / m_e \\ \epsilon = E_e / m_e \end{array}$$

Schöning/Rodejohann

Kurie-Plot (Fermi diagram)

$$\sqrt{\frac{dN(\eta)}{\left|H_{fi}\right|^{2}\eta^{2}}} = \epsilon_{0} - \epsilon$$

Beta decay of ⁶He \rightarrow ⁶Li e⁻ v

Note that the neutrino mass was set to zero here!

Inear function!

- matrix element independent of energy!
 - Fermi Theory

Schöning/Rodejohann

 $\sqrt{\frac{1}{|H_{c}|^{2}}} = constant$

Mass and Resolution Effects

Neutrino-Mass Measurement

Schöning/Rodejohann

Katrin Experiment

Measure Beta-Spectrum in the tritium decay

current limit: $m_v < 1 \text{ eV}$

Standard Model of Particle Physics SS 2013

Lifetime in Beta Decay

Transition probability depends only on available decay energy E₀

from beta Spectrum:

$$dN(\eta) d\eta = |H_{fi}|^2 \eta^2 (\epsilon_0 - \epsilon)^2 d\eta$$

with $\eta \sim \varepsilon$

Decay width $\propto \epsilon_0^5 \propto M^5$

Isotop	Halbwert- zeit
¹ n	11,7 m
³⁵ S	87 d
¹⁹⁸ Au	2,7 d
⁹¹ Y	61 d
¹³⁷ Cs	30 a
⁸⁷ Rb	6 x 10 ¹⁰ a
¹¹⁵ In	6 x 10 ¹⁴ a

Lifetime depends on the fifth power of the

- particle mass (muon decay)
- Q value (nuclear decay Q ~ $E_e + E_v$)

(only little recoil)

Weak Force

Lifetimes in weak decays of order 10⁻¹⁰ seconds – 10¹⁰ years

Interaction length:

- Nuclear interaction (Fe):
- Weak interaction (Fe):

 $\lambda_{\text{strong}} \sim O(10) \text{ cm}$ >> 10³ km (neutrino energy dependent)

Weak Force

Discovery of muon neutrino (Lederman et al.):

The weak force is really weak!

Weak scattering processes

- A constant matrix element (Fermi theory) gives an energy dependent cross section in weak scattering processes
- Reason: phase space!

 $\sigma(\mathbf{v}_{\mu}e \rightarrow \mu \mathbf{v}_{e}) \propto G_{F}^{2}s$

$$\sigma(\mathbf{v}_{\mu}d \rightarrow \mu u) \propto G_F^2 s$$

Weak scattering processes I

Kinematics:

• Fixed Target: $s=2E_{v}M_{target}$

Scattering cross section should rise linearly with neutrino beam energy

Schöning/Rodejohann

Weak scattering processes II

Center of mass energies limited in Fixed Target Experiments
 Trick: invert reaction at colliders:

$$v_e d \rightarrow e^- u \quad \leftrightarrow \quad e^+ d \rightarrow \overline{v}_e u$$

Kinematics:

- Fixed Target: $s=2E_v^{target}M_{target}$
- Collider: $s = 4 E_e^{coll} E_p$ (HERA: electron-proton)

from comparison:

$$E_{\nu}^{target} \sim 2 E_{e}^{coll} \frac{E_{p}}{M_{target}} \approx 50 \ TeV$$

Electron-Proton Collider HERA

$E_{e} = 26.7 \text{ GeV} \quad E_{p} = 920 \text{ GeV}$

HERA

Lorentz Invariant Kinematics of Deep Inelastic Scattering Process

with cms energy: s = 2 p P

Charged Current Event at H1

Schöning/Rodejohann

Weak scattering processes III

HERA beam energy translated into Fixed target

Breakdown of Fermi theory at high energies s^{1/2} ~ 100 GeV

Schöning/Rodejohann

25

Lorentz Structure of Weak Process?

Lagrangian (independent of energy)

$$L = \frac{G}{\sqrt{2}} \left(\overline{f} \Gamma f' \right) \left(\overline{f''} \widetilde{\Gamma} f''' \right)$$

most general ansatz for operator Γ :

Vector Current: $j_{V}^{\mu} = \bar{\psi} \gamma^{\mu} \psi$ (Fermi's proposal): Axial-vector Current: $j_{A}^{\mu} = \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$

scalar coupling: $\lambda = \overline{\psi} \psi$ pseudoscalar coupling:

 $\lambda = \bar{\psi} \gamma^5 \psi$

Tensor Coupling $\sigma_{A}^{\mu\nu} = \bar{\psi}(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu})\psi$

Different transitions in weak decays: $n \rightarrow p e v$

no spin flip (ΔJ=0)
electron and neutrino in singlet state

spin flip (ΔJ=0,1)

electron and neutrino in triplet state

Different transitions in weak decays: $n \rightarrow p e v$

spin flip (ΔJ=0,1)

electron and neutrino in triplet state

Note: spin flip ≠ helicity flip

Gamov Teller transition

Fermi transition RH anti-neutrino helicity Gamov Teller transition

Both, Fermi and Gamov Teller transitions observed in weak interactions

 Vector and Axialvector currents conserve helicities and realised in nature

Scalar and tensor (pseudoscalar) couplings flip helicity!
 Have to measure spin-orientation of decay leptons!

The End

Gamma Matrices II

$$y^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
$$y^{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \qquad y^{2} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \qquad y^{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\gamma^{5} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(in other representations g[•] is diagonal)

Schöning/Rodejohann

Spinors of Helicity States

$$u_{R} = |\vec{p}, \lambda = +1/2\rangle$$

$$u_{L} = |\vec{p}, \lambda = -1/2\rangle$$

$$v_{L} = |\vec{p}, \lambda = -1/2\rangle$$

$$v_{R} = |\vec{p}, \lambda = +1/2\rangle$$

 (u_1) (u_2) (v_1) (v_2)

fermions:

$$u_R = \sqrt{E+m} \begin{vmatrix} 1 \\ 0 \\ |\vec{p}| \\ E+m \\ 0 \end{vmatrix}$$

anti-fermions:

$$v_L = \sqrt{E+m} \begin{vmatrix} |\vec{p}| \\ E+m \\ 0 \\ 1 \\ 0 \end{vmatrix}$$

$$a_{L} = \sqrt{E+m} \begin{vmatrix} 0\\1\\0\\-|\vec{p}|\\\overline{E+m} \end{vmatrix}$$

 $v_R = \sqrt{E+m} \left| \frac{1}{E+m} \right|$

0

 $-|\vec{p}|$

0

limit
$$p \rightarrow \infty$$

 $u_R \rightarrow v_L$
 $u_L \rightarrow v_R$

Schöning/Rodejohann

Chirality Operator

limit
$$\mathbf{m} \to 0$$

 $u_R \sim v_L \sim \begin{vmatrix} 1 \\ 0 \\ 1 \\ 0 \end{vmatrix}$
 $u_L \sim v_R \sim \begin{vmatrix} 0 \\ 1 \\ 0 \\ 1 \end{vmatrix}$
operator:
 $\gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{vmatrix}$
right chirality left chirality
 $\gamma_5 u_R = u_R$
 $\gamma_5 u_L = -u_L$
eigenvalues ± 1

left-handed (chiral) particles: -1 right-handed (chiral) particles: +1

 $\gamma_5 v_L = v_L \quad \gamma_5 v_R = -v_R$

note: a right-handed chiral anti-particle has a left-handed helicity

Projection Operator

$$\Pi^{+} \psi = R \qquad \text{(right-handed (chiral) state)} \\ \Pi^{-} \psi = L \qquad \text{(left-handed (chiral) state)}$$

reformulate Dirac Equation:

 $i \gamma^{\mu} \partial_{\mu} R = m L \qquad i \gamma^{\mu} \partial_{\mu} L = m R$

note: massive fermions must have left-handed and right handed components

Vector and Axial Currents

Vector Current:

 $j_V^{\mu} = \bar{\psi} \gamma^{\mu} \psi$ $(R \gamma^{\mu} R, L \gamma^{\mu} L)$ in QED: $\partial_{\mu} j_V^{\mu} = 0$ (conservation of currents)

Axial-vector Current:

 $j^{\mu}_{A} = \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ note: $\gamma^{\mu} \gamma^{5} = -\gamma^{5} \gamma^{\mu}$

Left (right)-handed Current: $j_{L}^{\mu} = \bar{\psi} \gamma^{\mu} \Pi^{-} \psi$ $j_{R}^{\mu} = \bar{\psi} \gamma^{\mu} \Pi^{+} \psi$

relations:

 $j_L^{\mu} = 1/2 (j_V^{\mu} - j_A^{\mu})$ weak interaction (V-A theory): $j_R^{\mu} = 1/2 (j_V^{\mu} + j_A^{\mu})$