#### Lecture:

# Standard Model of Particle Physics

Heidelberg SS 2013

Registration: https://uebungen.physik.uni-heidelberg.de/v/378

# Experimental Tests of QED Part 1

## Overview

#### **PART I**

- Cross Sections and QED tests
- Accelerator Facilities + Experimental Results

#### **PART II**

- Tests of QED in Particle Decays and Resonances
- QED Radiative Effects

$$e^+e^- \rightarrow X$$
 $(e^-e^- \rightarrow X)$ 

\* test predictions of QED

$$e^+e^- \rightarrow X$$
  
 $(e^-e^- \rightarrow X)$ 

test predictions of QED

Why is  $\alpha_{em}$ =1/137 so small? Breakdown at higher energies?

$$e^+e^- \rightarrow X$$
  
 $(e^-e^- \rightarrow X)$ 

test predictions of QED

Why is  $\alpha_{em}$ =1/137 so small? Breakdown at higher energies?

Reactions depend on center of mass → many different accelerators

$$e^+e^- \rightarrow X$$
  
 $(e^-e^- \rightarrow X)$ 

test predictions of QED

Why is  $\alpha_{em}$ =1/137 so small? Breakdown at higher energies?

Reactions depend on center of mass → many different accelerators

Synchrotron Radiation Law::

$$P \propto \frac{E^4}{R^2}$$

large accelerators required for high energies

6

## List of ee-Accelerators

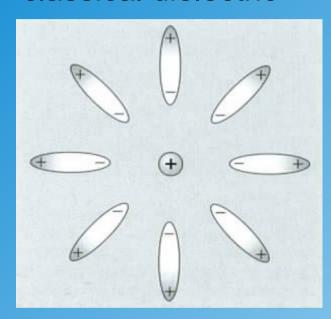
| Accelerator                            | Location                          | Years of operation | Shape<br>and<br>circumference |         | Positron<br>energy | Experiments                                    | Notable Discoveries                                                                                                            |
|----------------------------------------|-----------------------------------|--------------------|-------------------------------|---------|--------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| AdA                                    | Frascati, Italy; Orsay,<br>France | 1961–1964          | Circular, 3 meters            | 250 Me∨ | 250 Me∨            |                                                | Touschek effect (1963); first e <sup>-</sup> e <sup>-</sup> interactions recorded (1964)                                       |
| Princeton-Stanford<br>(e¯e¯)           | Stanford, California              | 1962–1967          | Two-ring, 12 m                | 300 Me∨ | 300 Me∨            |                                                | e¯e¯ interactions                                                                                                              |
| VEP-1 (e <sup>-</sup> e <sup>-</sup> ) | INP, Novosibirsk, Soviet<br>Union | 1964–1968          | Two-ring, 2.70 m              | 130 Me∨ | 130 Me√            |                                                | e¯e¯ scattering; QED radiative effects confirmed                                                                               |
| VEPP-2                                 | INP, Novosibirsk, Soviet<br>Union | 1965–1974          | Circular, 11.5 m              | 700 Me∨ | 700 Me∨            | OLYA, CMD ₽                                    | multihadron production (1966), e <sup>+</sup> e <sup>−</sup> →φ (1966), e <sup>+</sup> e <sup>−</sup> →γγ (1971)               |
| SPEAR                                  | SLAC                              | 1972-1990(?)       |                               |         |                    | Mark I, Mark II, Mark III                      | Discovery of Charmonium states                                                                                                 |
| VEPP-2M ₽                              | BINP, Novosibirsk                 | 1974-2000          | Circular, 17.88 m             | 700 Me√ | 700 Me∨            | ND, SND, CMD-2 🚱                               | e <sup>+</sup> e <sup>-</sup> cross sections, radiative decays of ρ, ω, and φ mesons                                           |
| DORIS                                  | DESY                              | 1974–1993          | Circular, 300m                | 5 GeV   | 5 GeV              | ARGUS, Crystal Ball, DASP, PLUTO               | Oscillation in neutral B mesons                                                                                                |
| PETRA                                  | DESY                              | 1978–1986          | Circular, 2 km                | 20 GeV  | 20 GeV             | JADE, MARK-J, PLUTO, TASSO                     | Discovery of the gluon in three jet events                                                                                     |
| CESR                                   | Cornell University                | 1979–2002          | Circular, 768m                | 6 GeV   | 6 Ge∀              | CUSB, CHESS, CLEO, CLEO-2, CLEO-2.5,<br>CLEO-3 | First observation of B decay, charmless and "radiative penguin" B decays                                                       |
| PEP                                    | SLAC                              | 1980-1990(?)       |                               |         |                    | Mark II                                        |                                                                                                                                |
| SLC                                    | SLAC                              | 1988-1998(?)       | Addition to<br>SLAC Linac     | 45 Ge∨  | 45 GeV             | SLD, Mark II                                   | First linear collider                                                                                                          |
| LEP                                    | CERN                              | 1989–2000          | Circular, 27 km               | 104 GeV | 104 GeV            | Aleph, Delphi, Opal, L3                        | Only 3 light (m ≤ m <sub>Z</sub> /2) weakly interacting neutrinos exist, implying only three generations of quarks and leptons |
| BEPC                                   | China                             | 1989–2004          | Circular, 240m                | 2.2 GeV | 2.2 GeV            | Beijing Spectrometer (I and II) 🗗              |                                                                                                                                |
| VEPP-4M €                              | BINP, Novosibirsk                 | 1994-              | Circular, 366m                | 6.0 GeV | 6.0 GeV            | KEDR ₫                                         | Precise measurement of Y-meson masses                                                                                          |
| PEP-II                                 | SLAC                              | 1998–2008          | Circular, 2.2 km              | 9 GeV   | 3.1 GeV            | BaBar                                          | Discovery of CP violation in B meson system                                                                                    |
| KEKB                                   | KEK                               | 1999–2009          | Circular, 3 km                | 8.0 GeV | 3.5 GeV            | Belle                                          | Discovery of CP violation in B meson system                                                                                    |
| DAΦNE                                  | Frascati, Italy                   | 1999-              | Circular, 98m                 | 0.7 GeV | 0.7 GeV            | KLOE @                                         | Crab-waist collisions (2007)                                                                                                   |
| CESR-c                                 | Cornell University                | 2002–2008          | Circular, 768m                | 6 GeV   | 6 GeV              | CHESS, CLEO-c                                  |                                                                                                                                |
| VEPP-2000 ₽                            | BINP, Novosibirsk                 | 2006-              | Circular, 24.4m               | 1.0 GeV | 1.0 GeV            | SND, CMD-3 ₽                                   | Round beams (2007)                                                                                                             |
| BEPC II                                | China                             | 2008-              | Circular, 240m                | 3.7 GeV | 3.7 GeV            | Beijing Spectrometer III                       |                                                                                                                                |

#### AdA Accelerator

- First e<sup>+</sup> e<sup>-</sup> collider ever
- AdA = Anello di Accumulazione (Frascati/Orsay, 1961-64)
- Energy: 250 MeV Electrons x 250 MeV Positrons

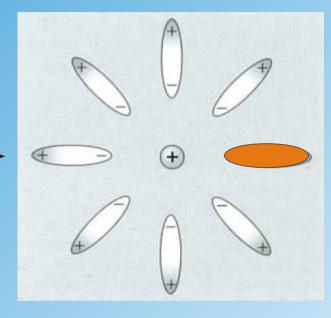
#### AdA Accelerator

- First e<sup>+</sup> e<sup>-</sup> collider ever
- AdA = Anello di Accumulazione (Frascati, 1961-64)
- Energy: 250 MeV Electrons x 250 MeV Positrons


#### **Motivation:**

 Bruno Touschek: excite the dielectric vacuum to create vector mesons (e.g. rho meson predicted to be light!)

Note: at that time all new particles had been discovered in hadronic interactions (ie. proton beams)!


## Dielectric Vacuum

#### classical dielectric



bare electrical charge shielded by induced dipoles

#### "excited dielectric"



rho-meson

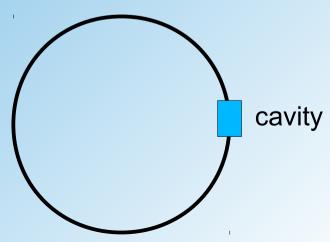
bare charge shielded by vacuum polarisation

high energy

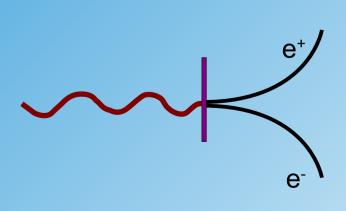
#### AdA Accelerator

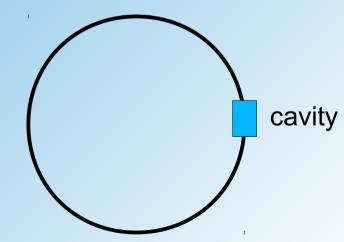
- First e<sup>+</sup> e<sup>-</sup> collider ever
- AdA = Anello di Accumulazione (Frascati, 1961-64)
- Energy: 250 MeV Electrons x 250 MeV Positrons

#### **Motivation:**

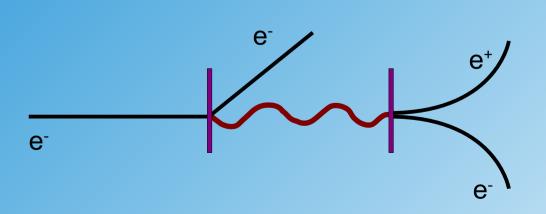

 Bruno Touschek: excite the dielectric vacuum to create vector mesons (e.g. rho meson predicted to be light!)

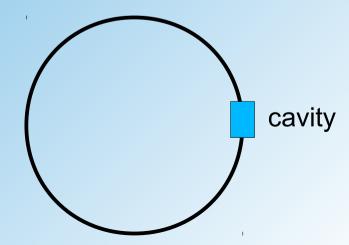
Note: at that time all new particles had been discovered in hadronic interactions (ie. proton beams)!


"Revolutionary" concept as the rho-meson is electrically neutral and was predicted to explain (as carrier) strong interactions


Remark: Indeed, Touschek was right. The strong force can be tested in e<sup>+</sup> e<sup>-</sup> collisions. But not in AdA (too low luminosity, too low energy)

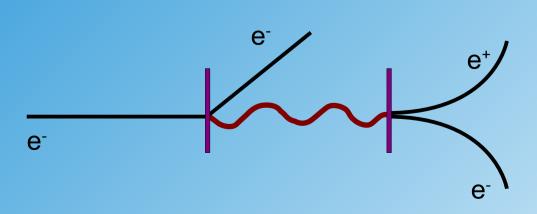
- How to store electrons and positrons?
  - magneto-optical storage ring (→ known at this time, synchrotron radiation facilities)

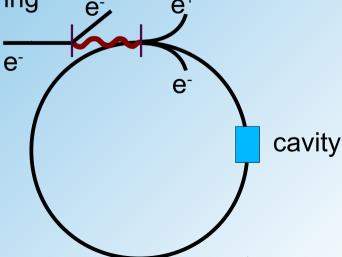




- How to store electrons and positrons?
  - → magneto-optical storage ring (→ known at this time, synchrotron radiation facilities)
- How to produce positrons?
  - → by photon conversions:  $\gamma \rightarrow e^+ e^- (\rightarrow \text{conversion target})$






- How to store electrons and positrons?
  - magneto-optical storage ring (→ known at this time, synchroton radiation facilities)
- How to produce positrons?
  - → by photon conversions:  $\gamma \rightarrow e^+ e^- (\rightarrow \text{conversion target})$
- How to produce the photons (E > 5-10 MeV)
  - Bremsstrahlung from high energetic electrons at target
     e⁻ N → γ e⁻ N using a linear electron accelerator (→ also known)



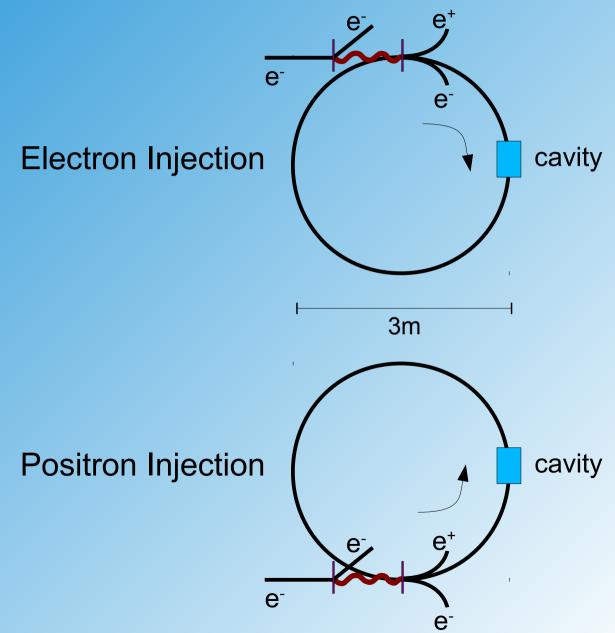



- How to store electrons and positrons?
  - magneto-optical storage ring (→ known at this time, synchroton radiation facilities)
- How to produce positrons?
  - → by photon conversions:  $\gamma \rightarrow e^+ e^- (\rightarrow conversion target)$
- How to produce the photons (E > 5-10 MeV)
  - Bremsstrahlung from high energetic electrons at target
     e⁻ N → γ e⁻ N using a linear electron accelerator (→ also known)
- How to fill the storage ring with electrons and positrons???

place the conversion target inside the storage ring








MAGNETIC PISCUSSION

bur Towshel.

# AdA Concept





How to make electrons and positrons collide?

Note: AdA is a single storage ring: electrons and positrons see same optics but in reverse direction

B.Touschek: It is guaranteed that an electron and a positron necessarily meet in a single orbit because QED is CP (charge-parity)



How to make electrons and positrons collide?

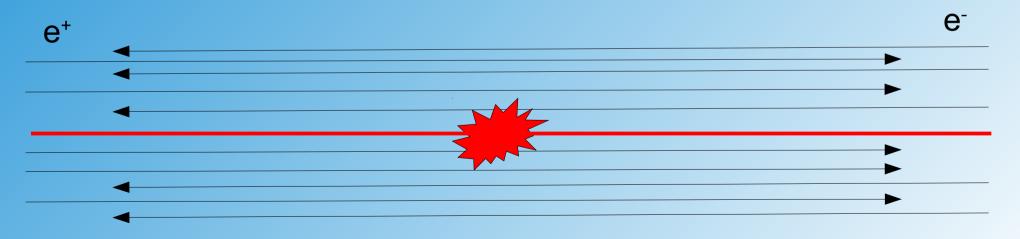
Note: AdA is a single storage ring: electrons and positrons see same optics but in reverse direction

B.Touschek: It is guaranteed that an electron and a positron necessarily meet in a single orbit because QED is CP (charge-parity)

If a ring collider works, then CP(T) invariance of QED is confirmed!!!

Note: CP(T) invariance says that a positron can be regarded as an electron traveling in reverse time direction.

Touschek was right, in a very short time AdA was commissioned and electron-positron collisions were observed – much more than just a technical (engineering) achievement!


20

- How to measure that electron-positron collisions take place?
- How many collisions?

**Definition of "Luminosity" Measurement (source factor)** 

$$R = L \sigma$$

Relation between rate of events and cross section of process



# Luminosity Measurement in Ring

Collider:

$$L = \frac{N_1 N_2 f}{4 \pi A}$$

 $N_1$  and  $N_2$  and beam cross section A are unknown and have to be precisely measured  $\rightarrow$  difficult

More simple ansatz – use reference process(es):

$$e^+ e^- \rightarrow e^+ e^-$$

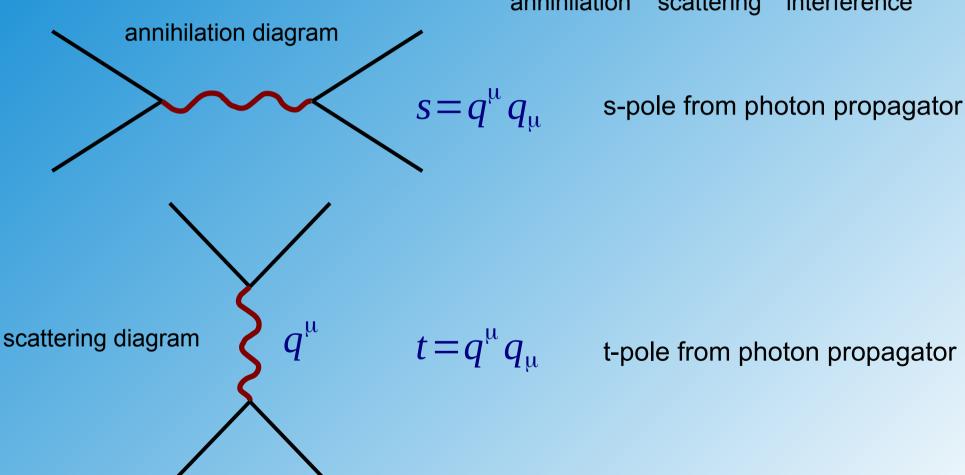
$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{\pi\alpha^2}{s} \left( u^2 \left( \frac{1}{s} + \frac{1}{t} \right)^2 + \left( \frac{t}{s} \right)^2 + \left( \frac{s}{t} \right)^2 \right)$$

ultrarelativistic approx. (Bhabha 1936)

$$e^+ e^- \rightarrow \gamma \gamma$$

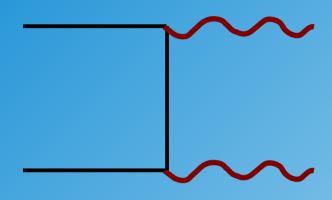
$$\frac{d\sigma}{d\Omega}(e^+e^- \to \gamma\gamma) = \frac{\alpha^2}{2s} \frac{u^2 + t^2}{tu}$$

annihilation process (Compton-like)


**Both processes are forward peaked!** 

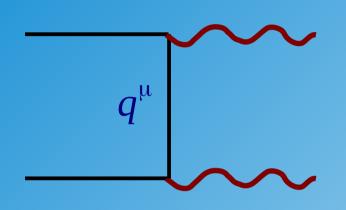
t-pole 
$$t = -s\sin^2(\theta/2)$$

# **Bhabha Scattering**


$$\frac{d\sigma}{d\Omega}(e^{+}e^{-} \rightarrow e^{+}e^{-}) = \frac{\alpha^{2}}{2s} \left| \frac{u^{2} + t^{2}}{s^{2}} + \frac{s^{2} + u^{2}}{t^{2}} + \frac{2u^{2}}{st} \right|$$

annihilation scattering interference




## **Photon Pair Production**

$$\frac{d\sigma}{d\Omega}(e^+e^- \to \gamma\gamma) = \frac{\alpha^2}{2s} \left| \frac{u^2 + t^2}{tu} \right|$$



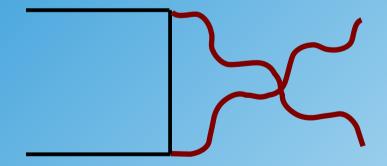
## Photon Pair Production

$$\frac{d\sigma}{d\Omega}(e^+e^- \to \gamma\gamma) = \frac{\alpha^2}{2s} \left| \frac{u}{t} + \frac{t}{u} \right|$$



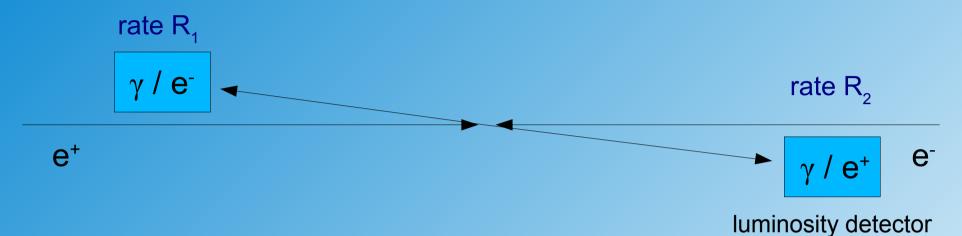

$$t=q^{\mu}q_{\mu}$$

t-pole from electron propagator


## Photon Pair Production

$$\frac{d\sigma}{d\Omega}(e^+e^- \to \gamma\gamma) = \frac{\alpha^2}{2s} \left| \frac{u}{t} + \frac{t}{u} \right|$$




$$t=q^{\mu}q_{\mu}$$

t-pole from electron propagator

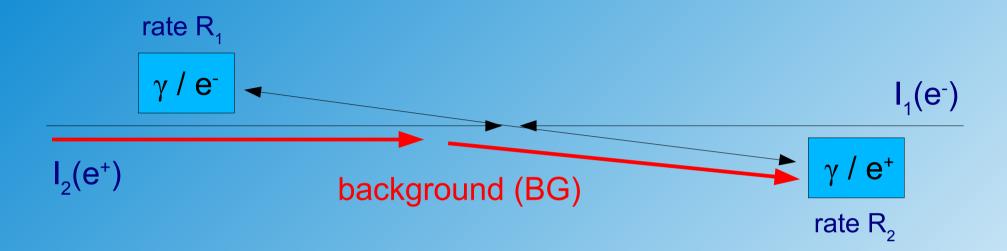


u-pole from crossed diagram

# Sketch of Luminosity Measurement



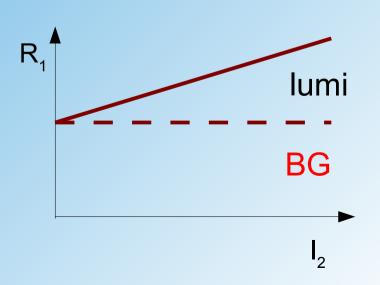
Measurement: rates R<sub>1</sub> and R<sub>2</sub> (in counts/s)


Use: 
$$R = L \sigma_{Detector} \leftrightarrow L = R / \sigma_{Detector}$$

$$\sigma_{Detector} = \int_{Detector} \frac{d\sigma}{d\Omega} d\Omega$$

acceptance calculation is an experimental task!

σ<sub>Detector</sub> is the **observed** cross section ≠ total cross cross section

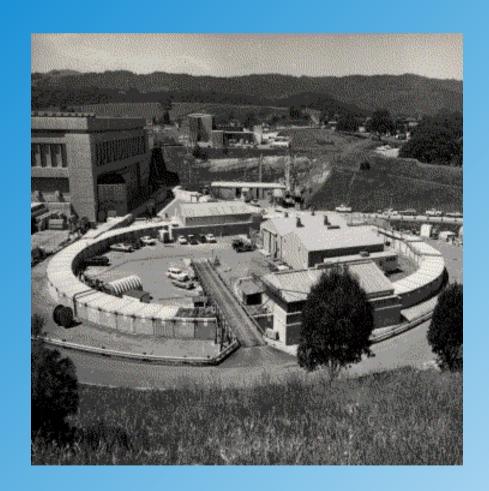

# Background for Luminosity Measurement



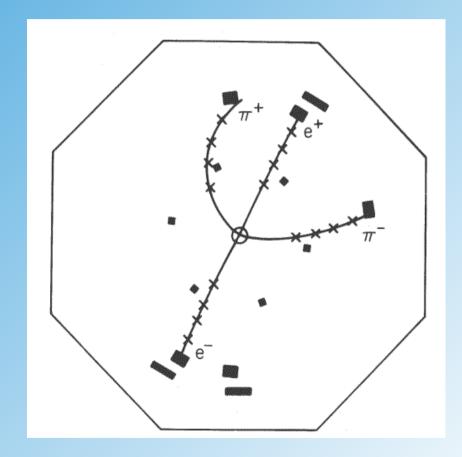
Problem: beam induced background, e.g. electron-rest gas scattering)

Ansatz:

$$R_1 = a_1 I_1 + b I_1 I_2 = I_1 (a_1 + b I_2)$$
 $R_2 = a_2 I_2 + b I_1 I_2 = I_2 (a_2 + b I_1)$ 
BG lumi

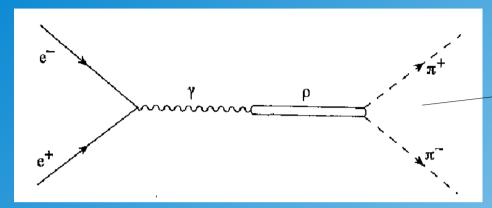



# The Big e<sup>+</sup>e<sup>-</sup> Accelerators

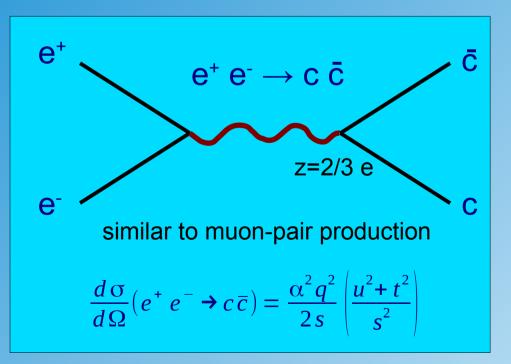

- SPEAR (Stanford Positron Electron Accelerator Ring) at SLAC (1974-1990), s<sup>1/2</sup>=3-8 GeV, Discovery of the Charm Quark
- PETRA (Positron Electron Tandem Ringanlage) at DESY (1978-1986), s<sup>1/2</sup>=38 GeV, Discovery of Gluon-Jets
- TRISTAN at KEK, Japan (1986-1989) s<sup>1/2</sup>=50-64 GeV (discovery of the "desert")
- Large Electron-Positron Collider, Geneva (1988-2000):
   s<sup>1/2</sup>=90 GeV (LEP I, Z-factory), s<sup>1/2</sup>=200 GeV (LEP II, WW factory)
- Stanford Linear Accelerator at SLAC, Stanford (1991-1998)
   s<sup>1/2</sup>=90 GeV (SLC, Z-factory)

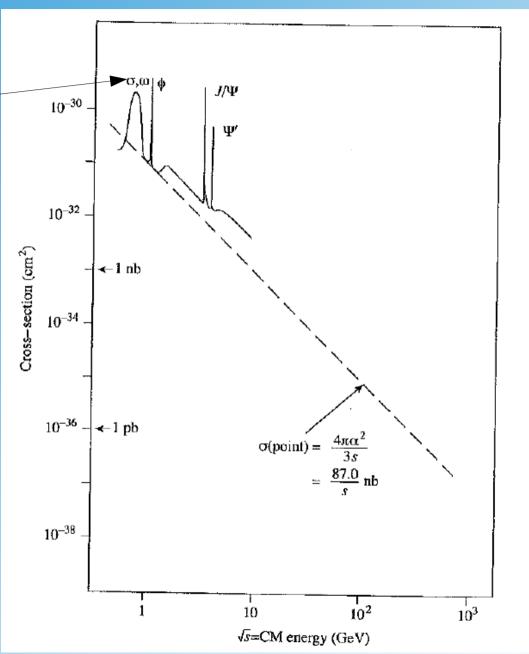
## SPEAR at SLAC

 Stanford Positron Electron Accelerator Ring (1974-1990), s<sup>1/2</sup>=3-7 GeV, Discovery of the J/Psi



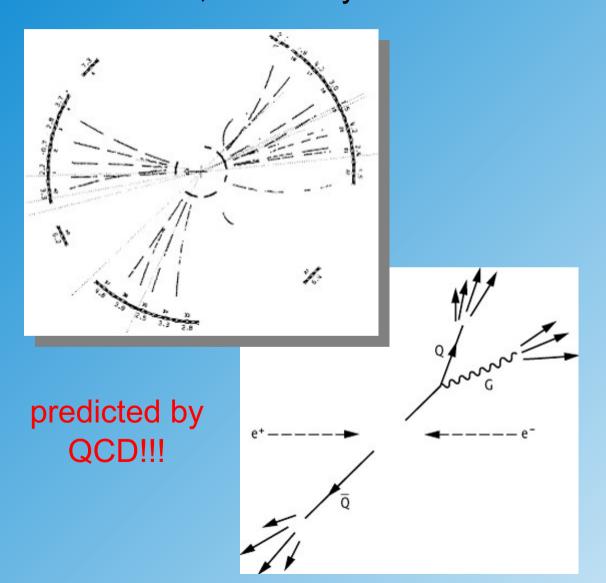

Discovery of the Charm Quark





 $\Psi(2S) \rightarrow J/\Psi \pi^+ \pi^- \rightarrow e^+ e^- \pi^+ \pi^-$ 

# **Quark-Pair Production**




# Resonant Rho production \* later



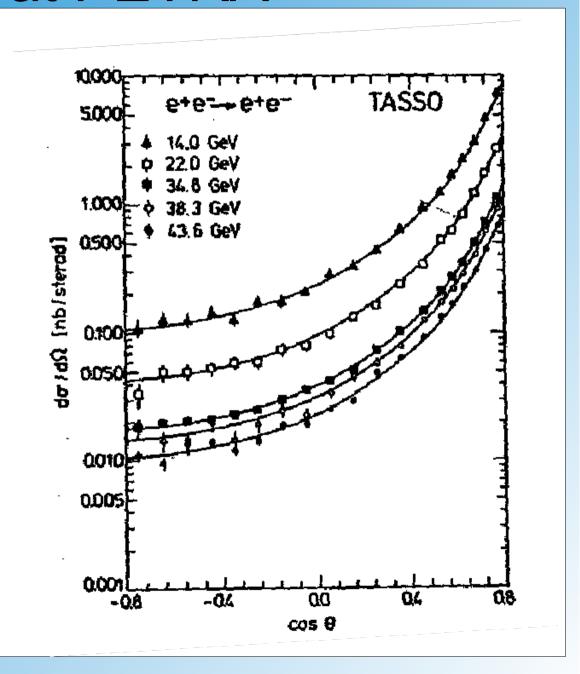


## PETRA at DESY

Positron Electron Tandem Ring Anlage (1978-1986),
 s<sup>1/2</sup>=38 GeV, Discovery of Gluon Jets








## Tasso at PETRA

#### **QED Test:**

Bhabha scattering

$$\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{\pi\alpha^2}{s} \left( u^2 \left( \frac{1}{s} + \frac{1}{t} \right)^2 + \left( \frac{t}{s} \right)^2 + \left( \frac{s}{t} \right)^2 \right)$$



## Total Muon Pair Production C.S.

#### derivation:

$$\frac{d\sigma}{dt} = -\frac{2\pi\alpha^2}{s^2} \frac{t^2 + u^2}{s^2}$$

$$s+t+u=\sum m_i^2 \approx 0$$

$$\Rightarrow u^2=t^2+s^2+2ts$$

(only two independent)

$$\frac{d\sigma}{dt} = -2\pi\alpha^2 \frac{2t^2 + s^2 + 2ts}{s^4}$$

$$\sigma = -\int_{-s}^{0} 2\pi \alpha^{2} \frac{2t^{2} + s^{2} + 2ts}{s^{4}} = -2\pi \alpha^{2} \frac{-2/3s^{3} - s^{3} + s3}{s^{4}} = \frac{4\pi \alpha^{2}}{3s}$$

# Myon Pair Production

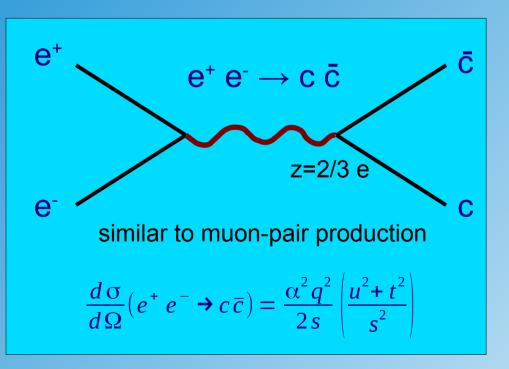


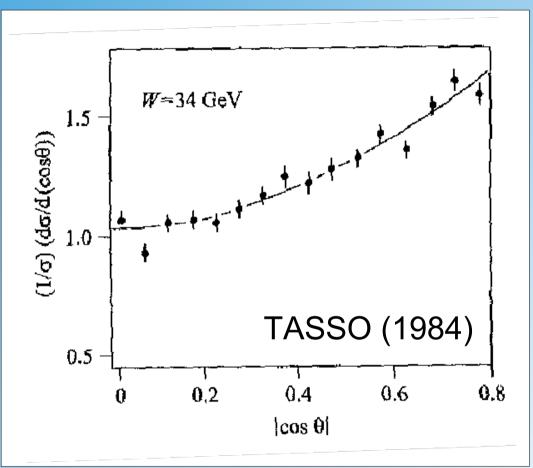
PETRA accelerator (DESY)

# Quark-Pair Production

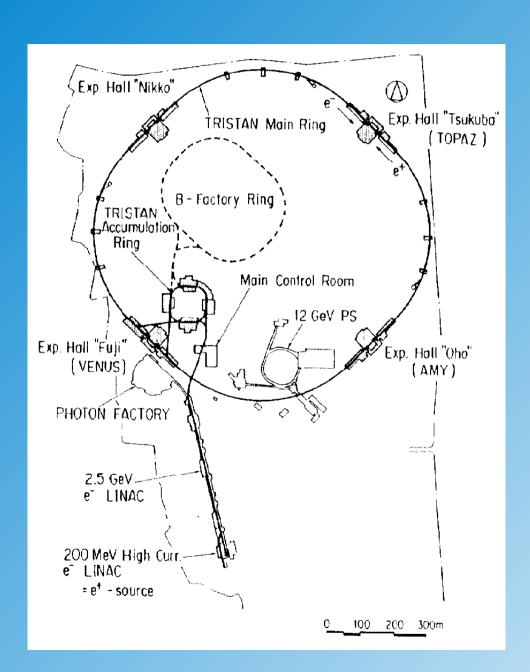
#### **Difficulty:**

quarks and anti-quarks are experim. difficult to distinguish

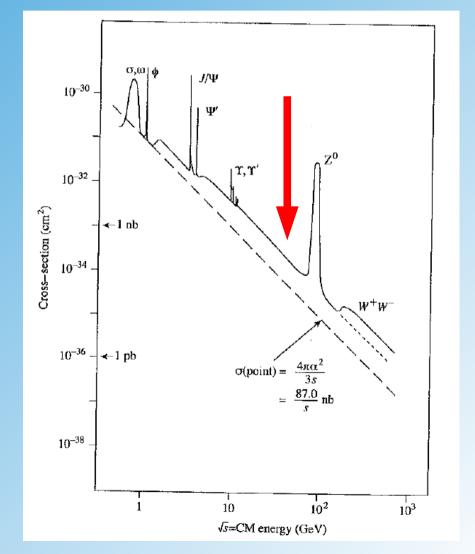

$$t = -\frac{s}{2} \left( 1 \mp \cos \theta \right)$$


$$u = -\frac{s}{2} \left( 1 \pm \cos \theta \right)$$

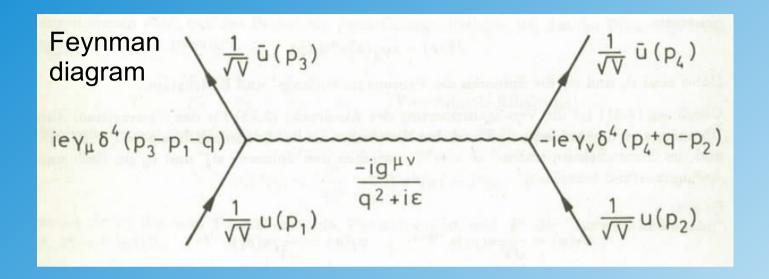
different signs for quarks and antiquarks


$$t^2 + u^2 = \frac{s^2}{2} (1 + \cos^2 \theta)$$

quarks and antiquarks averaged!







## Tristan Collider at KEK



1986-1989: s<sup>1/2</sup>=50-64 GeV Search for the top in the "desert"



## QED Tests in e<sup>+</sup>e<sup>-</sup> collisions



#### Possible tests:

- universality of charges (leptons, quarks, ...)
- energy dependence of coupling ("running")
- test of perturbation theory
- Lorentz structure of coupling
- → propagator effect → new physics
- test crossing symmetries (→ gauge invariance)

38

# Measurement of R<sub>had</sub>

#### **Test of Quark Charges**

$$R = \frac{e^+ e^- \rightarrow hadrons}{e^+ e^- \rightarrow \mu^+ \mu^-}$$

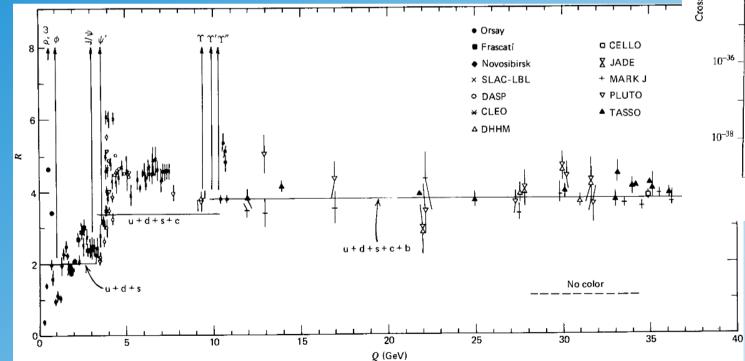
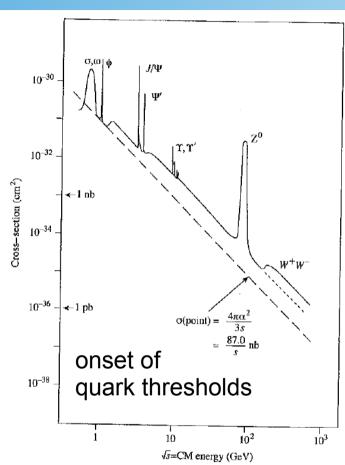
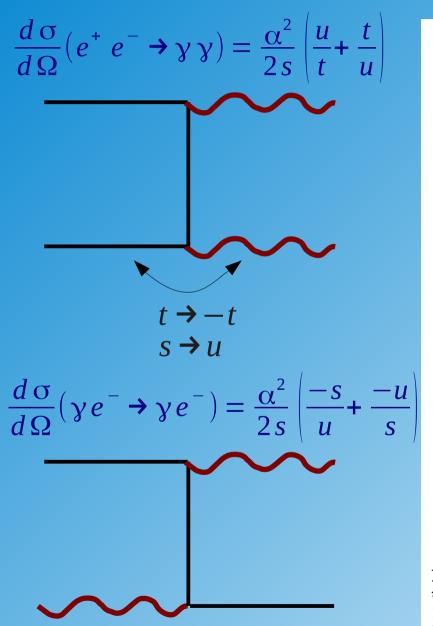





Fig. 11.3 Ratio R of (11.6) as a function of the total  $e^-e^+$  center-of-mass energy. (The sharp peaks correspond to the production of narrow  $1^-$  resonances just below or near the flavor thresholds.)



## **Crossing Symmetries**



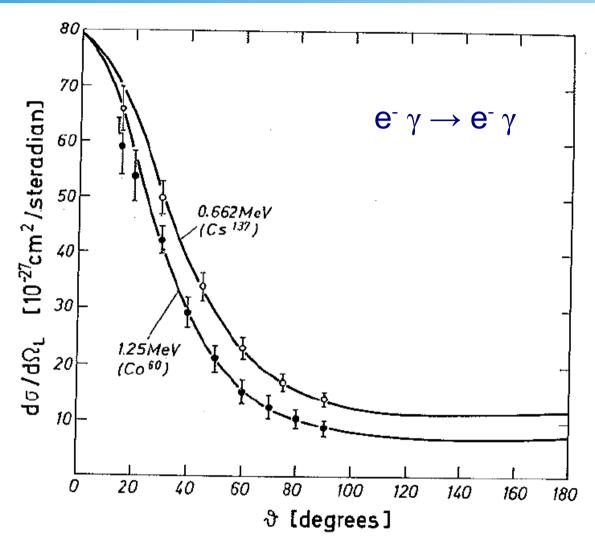
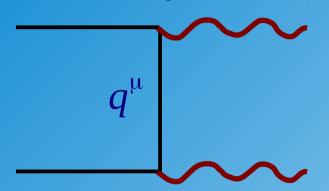



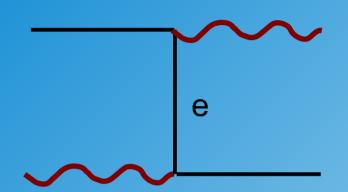

Figure 10.7 Experimental results for Compton scattering. The curves correspond to the Klein-Nishina formula (10.41) for photon energies  $\omega = 0.662$  MeV and  $\omega = 1.25$  MeV. The experimental data are from Hofstadter (1949) and Bernstein (1956) (after Evans 1958).

## The Low Energy Limit

Electromagnetic coupling at low energy:



$$Q^2 = -t = -(q^{\mu}q_{\mu}) \rightarrow 0$$


Thompson scattering cross section

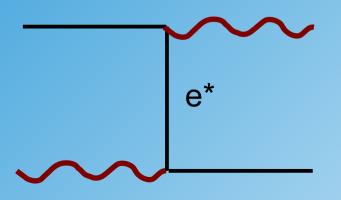
$$\sigma_t = \frac{8\pi}{3r_e^2} = \frac{8\pi}{3} \left| \frac{\alpha \lambda_c}{2\pi} \right|^2$$

used to determine  $\alpha$ 

# The Low Energy Limit

Electromagnetic coupling at low energy:




$$Q^2 = -t = -(q^{\mu} q_{\mu}) \rightarrow m_e^2$$

Thompson scattering cross section

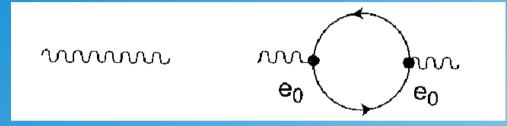
$$\sigma_t = \frac{8\pi}{3r_e^2} = \frac{8\pi}{3} \left[ \frac{\alpha \lambda_c}{2\pi} \right]^2$$

not dependent on energy! Used to determine  $\alpha$ 

General cross section:

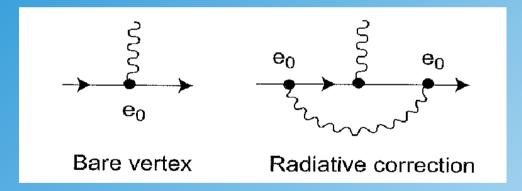


$$\frac{d\sigma}{d\Omega}(\gamma e^{-} \rightarrow \gamma e^{-}) = \frac{\alpha^{2}}{2s} \left| \frac{-s}{u} + \frac{-u}{s} \right|$$


two terms

42

# Running of alpha<sub>em</sub>


$$\alpha(Q=0)=1/137 \longrightarrow \alpha(Q=90\,GeV)=1/128$$

self-energy corrections



alpha is not a constant!

#### vertex corrections



dressed charge!

- → measure em. coupling for different (high) energies
- → search for new physics effects at mass scale ∧

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma(QED)}{d\Omega} \left[ 1 + \frac{s}{\Lambda^2} \right]$$

# Lorentz-Structure of Electromagnetic Interaction

#### **From Maxwell Equations:**

$$\partial_{\nu}\partial^{\nu}A^{\mu}(x) = eJ^{\mu}(x)$$

in QED:  $\partial_{\mu} j_{V}^{\mu} = 0$  (conservation of currents)

electromagnetic interaction described by vector currents!

Also true at high energies?

#### **Vector Current:**

$$j^{\mu}_{V} = \bar{\Psi} \gamma^{\mu} \Psi$$

#### **Axial-vector Current:**

$$j_A^{\mu} = \bar{\Psi} \, \gamma^{\mu} \gamma^5 \Psi$$

scalar coupling:

$$\lambda = \bar{\psi}\psi$$

pseudoscalar coupling:

$$\lambda = \bar{\psi} \gamma^5 \psi$$

lead in general to different angular distributions!

## LEP Collider



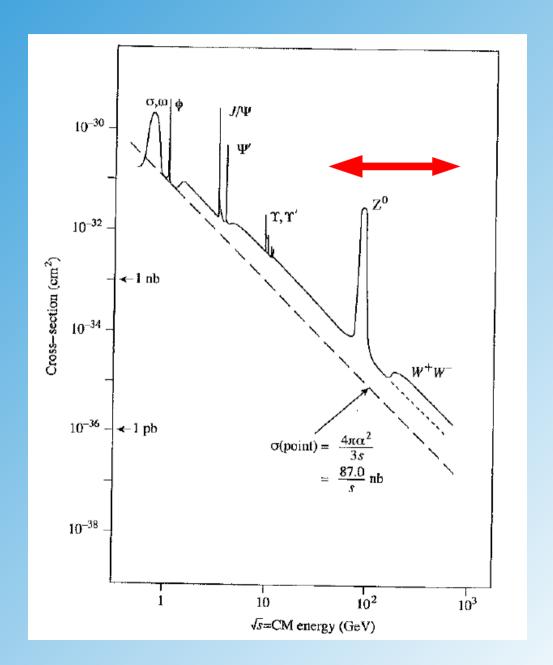
biggest electron-positron collider with up to 200 GeV centre of mass

4 experiments: ALEPH, DELPHI, L3, OPAL

LEP1: "Z-factory"

LEP2: "WW factory"




## LEP Regime

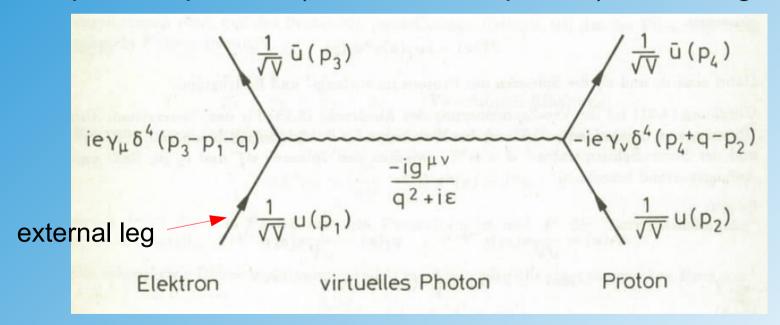
#### **Processes:**

$$e^+ e^- \rightarrow Z$$

$$e^+ e^- \rightarrow W^+ W^-$$

at LEP energies radiative and electroweak effects play an important role!






# Backup

## Fermion-Fermion Scattering

$$S_{fi}^{(1)} = ie^2 \int \frac{d^4q}{(2\pi)^4} \, \delta^4(p_3 - p_1 - q) \, \delta^4(p_4 + q - p_2) \, (2\pi)^8$$
$$\cdot \frac{1}{V^2} \overline{u}(p_3) \gamma_\mu u(p_1) \cdot \frac{-g^{\mu\nu}}{q^2 + i\epsilon} \cdot \overline{u}(p_4) \gamma_\nu u(p_2)$$

#### particle-particle (here electron-proton) scattering



lowest oder perturbation theory: leading order graph (Born)

### Gamma Matrices I

Gamma matrices  $\gamma^{\mu}$  are chosen such that  $\gamma^0$  is hermitian while  $\gamma^k$  (k=1,2,3) are anti-hermitian

$$(\gamma^0)^+ = \gamma^0, \ (\gamma^0)^\mu = 1,$$
  
 $(\gamma^k)^+ = -(\gamma^k), \ (\gamma^k)^\mu = -1 \ (k=1,2,3)$ 

We define  $\gamma^5$  as the hermitian matrix:  $\gamma^5 = i \gamma^0 \gamma^1 \gamma^2 \gamma^3$ ,  $(\gamma^5)^2 = 1$ ,

The 4x4 gamma matrices can be represented by (representation where  $\gamma^0$  is diagonal):

With the 2x2 Pauli matrices:

$$\underline{\sigma}^1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \underline{\sigma}^2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad \underline{\sigma}^3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Gamma matrices anti-commute:  $\gamma^i \gamma^k + \gamma^k \gamma^i = 0$  for  $i \neq k$ 

## Gamma Matrices II

$$\gamma^0 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

$$\gamma^{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \qquad \gamma^{2} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \qquad \gamma^{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\gamma^2 = \begin{bmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{bmatrix}$$

$$y^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\gamma^5 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(in other representations g is diagonal)