Lecture:

Standard Model of Particle Physics

Heidelberg SS 2013

Registration: https://uebungen.physik.uni-heidelberg.de/v/378

Experimental Tests of QED Part 1

Overview

PART I

- Cross Sections and QED tests
- Accelerator Facilities + Experimental Results

PART II

- Tests of QED in Particle Decays and Resonances
- QED Radiative Effects

Measurement of Cross Sections

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{X} \\
\left(\mathrm{e}^{-} \mathrm{e}^{-} \rightarrow \mathrm{X}\right)
\end{gathered}
$$

- test predictions of QED

Measurement of Cross Sections

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{X} \\
\left(\mathrm{e}^{-} \mathrm{e}^{-} \rightarrow \mathrm{X}\right)
\end{gathered}
$$

- test predictions of QED

Why is $\alpha_{\mathrm{em}}=1 / 137$ so small?
Breakdown at higher energies?

Measurement of Cross Sections

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{X} \\
\left(\mathrm{e}^{-} \mathrm{e}^{-} \rightarrow \mathrm{X}\right)
\end{gathered}
$$

- test predictions of QED

Why is $\alpha_{\mathrm{em}}=1 / 137$ so small?
Breakdown at higher energies?
Reactions depend on center of mass \rightarrow many different accelerators

Measurement of Cross Sections

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{X} \\
\left(\mathrm{e}^{-} \mathrm{e}^{-} \rightarrow \mathrm{X}\right)
\end{gathered}
$$

- test predictions of QED

Why is $\alpha_{e m}=1 / 137$ so small?
Breakdown at higher energies?

Reactions depend on center of mass \rightarrow many different accelerators
Synchrotron Radiation Law::

$$
P \propto \frac{E^{4}}{R^{2}}
$$

- large accelerators required for high energies

List of ee－Accelerators

Accelerator	Location	Years of operation	Shape and circumference	Electron energy	Positron energy	Experiments	Notable Discoveries
AdA	Frascati，Italy；Orsay， France	1961－1964	Circular， 3 meters	250 MeV	250 MeV		Touschek effect（1963）；first $\mathrm{e}^{-} \mathrm{e}^{-}$interactions recorded（1964）
Princeton－Stanford $\left(e^{-} e^{-}\right)$	Stanford，California	1962－1967	Two－ring， 12 m	300 MeV	300 MeV		$\mathrm{e}^{-} \mathrm{e}^{-}$interactions
VEP－1（ $\mathrm{e}^{-} \mathrm{e}^{-}$）	$\mathbb{N} P$ ，Novosibirsk，Soviet Union	1964－1968	Two－ring， 2.70 m	130 MeV	130 MeV		$\mathrm{e}^{-} \mathrm{e}^{-}$scattering；QED radiative effects confirmed
VEPP－2	INP，Novosibirsk，Soviet Union	1965－1974	Circular， 11.5 m	700 MeV	700 MeV	OLYA，CMD ${ }^{\text {c }}$	multihadron production（1966）， $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \varphi$（1966）， $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{VV}$（1971）
SPEAR	SLAC	1972－1990（？）				Mark I，Mark II，Mark III	Discovery of Charmonium states
VEPP－2M	BINP，Novosibirsk	1974－2000	Circular， 17.88 m	700 MeV	700 MeV	ND，SND，CMD－2m	$\mathrm{e}^{+} \mathrm{e}^{-}$cross sections，radiative decays of ρ, ω ，and φ mesons
DORIS	DESY	1974－1993	Circular， 300 m	5 GeV	5 GeV	ARGUS，Crystal Ball，DASP，PLUTO	Oscillation in neutral B mesons
PETRA CESR	DESY Cornell University	$\begin{aligned} & 1978-1986 \\ & 1979-2002 \end{aligned}$	Circular， 2 km Circular，768m		20 GeV 6 GeV	JADE，MARK－J，PLUTO，TASSO CUSB，CHESS，CLEO，CLEO－2，CLEO－2．5， CLEO－3	Discovery of the gluon in three jet events First observation of B decay，charmless and＂radiative penguin＂B decays
PEP	SLAC	1980－1990（？）				Mark II	
SLC	SLAC	1988－1998（？）	Addition to SLAC Linac	45 GeV	45 GeV	SLD，Mark II	First linear collider
LEP	CERN	1989－2000	Circular， 27 km	104 GeV	104 GeV	Aleph，Delphi，Opal，L3	Only 3 light（ $\mathrm{m} \leq \mathrm{m}_{\mathrm{Z}} / 2$ ）weakly interacting neutrinos exist，implying only three generations of quarks and leptons
BEPC VEPP－4M स	China BINP，Novosibirsk	$\begin{aligned} & \text { 1989-2004 } \\ & \text { 1994- } \end{aligned}$	Circular，240m Circular，366m	$\begin{aligned} & 2.2 \mathrm{GeV} \\ & 6.0 \mathrm{GeV} \end{aligned}$	$\begin{aligned} & 2.2 \mathrm{GeV} \\ & 6.0 \mathrm{GeV} \end{aligned}$	Beijing Spectrometer（I and II）国 KEDR 屈	Precise measurement of Y －meson masses
PEP－II	SLAC	1998－2008	Circular， 2.2 km	9 GeV	3.1 GeV	BaBar	Discovery of CP violation in B meson system
KEKB DAФNE	KEK Frascati，Italy	$\begin{aligned} & \text { 1999-2009 } \\ & \text { 1999- } \end{aligned}$	Circular， 3 km Circular， 98 m	8.0 GeV 0.7 GeV	$\begin{aligned} & 3.5 \mathrm{GeV} \\ & 0.7 \mathrm{GeV} \end{aligned}$	Belle KLOE 家	Discovery of CP violation in B meson system Crab－waist collisions（2007）
CESR－c	Cornell University	2002－2008	Circular， 768 m	6 GeV	6 GeV	CHESS，CLEO－c	
VEPP－2000 『	BINP，Novosibirsk	2006－	Circular，24．4m	1.0 GeV	1.0 GeV	SND，CMD－3［	Round beams（2007）
BEPC II	China	2008－	Circular， 240 m	3.7 GeV	3.7 GeV	Beijing Spectrometer III	

AdA Accelerator

- First $\mathrm{e}^{+} \mathrm{e}^{-}$collider ever
- AdA = Anello di Accumulazione (Frascati/Orsay, 1961-64)
- Energy: 250 MeV Electrons x 250 MeV Positrons

AdA Accelerator

- First $\mathrm{e}^{+} \mathrm{e}^{-}$collider ever
- AdA = Anello di Accumulazione (Frascati, 1961-64)
- Energy: 250 MeV Electrons x 250 MeV Positrons

Motivation:

- Bruno Touschek: excite the dielectric vacuum to create vector mesons (e.g. rho meson predicted to be light!)

Note: at that time all new particles had been discovered in hadronic interactions (ie. proton beams)!

Dielectric Vacuum

classical dielectric

bare electrical charge shielded by induced dipoles
"excited dielectric"

bare charge shielded by vacuum polarisation

AdA Accelerator

- First $\mathrm{e}^{+} \mathrm{e}^{-}$collider ever
- AdA = Anello di Accumulazione (Frascati, 1961-64)
- Energy: 250 MeV Electrons x 250 MeV Positrons

Motivation:

- Bruno Touschek: excite the dielectric vacuum to create vector mesons (e.g. rho meson predicted to be light!)

Note: at that time all new particles had been discovered in hadronic interactions (ie. proton beams)!
"Revolutionary" concept as the rho-meson is electrically neutral and was predicted to explain (as carrier) strong interactions

Remark: Indeed, Touschek was right. The strong force can be tested in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions. But not in AdA (too low luminosity, too low energy)

AdA Challenges I

- How to store electrons and positrons?
\rightarrow magneto-optical storage ring $(\rightarrow$ known at this time, synchrotron radiation facilities)

AdA Challenges I

- How to store electrons and positrons?
\rightarrow magneto-optical storage ring $(\rightarrow$ known at this time, synchrotron radiation facilities)
-How to produce positrons?
\rightarrow by photon conversions: $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\rightarrow$ conversion target $)$

AdA Challenges I

- How to store electrons and positrons?
\rightarrow magneto-optical storage ring $(\rightarrow$ known at this time, synchroton radiation facilities)
-How to produce positrons?
\rightarrow by photon conversions: $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\rightarrow$ conversion target $)$
- How to produce the photons ($\mathrm{E}>5-10 \mathrm{MeV}$)
- Bremsstrahlung from high energetic electrons at target $e^{-} \mathrm{N} \rightarrow \gamma \mathrm{e}-\mathrm{N}$ using a linear electron accelerator (\rightarrow also known)

AdA Challenges I

- How to store electrons and positrons?
\rightarrow magneto-optical storage ring $(\rightarrow$ known at this time, synchroton radiation facilities)
-How to produce positrons?
\rightarrow by photon conversions: $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}(\rightarrow$ conversion target $)$
- How to produce the photons ($\mathrm{E}>5-10 \mathrm{MeV}$)
- Bremsstrahlung from high energetic electrons at target $e^{-} \mathrm{N} \rightarrow \gamma \mathrm{e}^{-} \mathrm{N}$ using a linear electron accelerator (\rightarrow also known)
- How to fill the storage ring with electrons and positrons???
- place the conversion target inside the storage ring

MAGNETIC PISCUSSION
bruslousheh.

AdA Concept

AdA Challenges II

- How to make electrons and positrons collide?

Note: AdA is a single storage ring: electrons and positrons see same optics but in reverse direction
B.Touschek: It is guaranteed that an electron and a positron necessarily meet in a single orbit because QED is CP (chargeparity)

AdA Challenges II

- How to make electrons and positrons collide?

Note: AdA is a single storage ring: electrons and positrons see same optics but in reverse direction
B.Touschek: It is guaranteed that an electron and a positron necessarily meet in a single orbit because QED is CP (chargeparity)

If a ring collider works, then $\mathrm{CP}(\mathrm{T})$ invariance of QED is confirmed!!!
Note: $\mathrm{CP}(\mathrm{T})$ invariance says that a positron can be regarded as an electron traveling in reverse time direction.

Touschek was right, in a very short time AdA was commissioned and electron-positron collisions were observed - much more than just a technical (engineering) achievement!

AdA Challenges III

- How to measure that electron-positron collisions take place?
-How many collisions?
Definition of "Luminosity" Measurement (source factor)

$$
R=L \sigma
$$

Relation between rate of events and cross section of process

Luminosity Measurement in Ring

Collider:

$$
L=\frac{N_{1} N_{2} f}{4 \pi A}
$$

N_{1} and N_{2} and beam cross section A are unknown and have to be precisely measured \rightarrow difficult

More simple ansatz - use reference process(es):
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$
ultrarelativistic approx. (Bhabha 1936)

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2}}{2 s} \frac{u^{2}+t^{2}}{t u} \\
& \text { annihilation process (Compton-like) }
\end{aligned}
$$

Bhabha Scattering

$$
\frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow e^{+} e^{-}\right)=\frac{\alpha^{2}}{2 s}\left|\frac{u^{2}+t^{2}}{s^{2}}+\frac{s^{2}+u^{2}}{t^{2}}+\frac{2 u^{2}}{s t}\right|
$$

Photon Pair Production

$$
\frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2}}{2 s}\left|\frac{u^{2}+t^{2}}{t u}\right|
$$

Photon Pair Production

$$
\frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2}}{2 s}\left|\frac{u}{t}+\frac{t}{u}\right|
$$

$t=q^{\mu} q_{\mu} \quad$ t-pole from electron propagator

Photon Pair Production

$$
\frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow \gamma \gamma\right)=\frac{\alpha^{2}}{2 s}\left|\frac{u}{t}+\frac{t}{u}\right|
$$

$t=q^{\mu} q_{\mu}$
t-pole from electron propagator

u-pole from crossed diagram

Sketch of Luminosity Measurement

$$
\sigma_{\text {Detector }}=\int_{\text {Detector }} \frac{d \sigma}{d \Omega} d \Omega
$$

acceptance calculation is an experimental task!
$\sigma_{\text {Detector }}$ is the observed cross section \neq total cross cross section

Background for Luminosity Measurement

Problem: beam induced background, e.g. electron-rest gas scattering)
Ansatz:

$$
\begin{aligned}
& R_{1}=a_{1} I_{1}+b I_{1} I_{2}=I_{1}\left(a_{1}+b I_{2}\right) \\
& R_{2}=a_{2} I_{2}+b I_{1} I_{2}=I_{2}\left(a_{2}+b I_{1}\right)
\end{aligned}
$$

BG lumi

The Big e ${ }^{+} e^{-}$Accelerators

- SPEAR (Stanford Positron Electron Accelerator Ring) at SLAC (1974-1990), $s^{1 / 2}=3-8 \mathrm{GeV}$, Discovery of the Charm Quark
- PETRA (Positron Electron Tandem Ringanlage) at DESY (1978-1986), $s^{1 / 2}=38 \mathrm{GeV}$, Discovery of Gluon-Jets
- TRISTAN at KEK, Japan (1986-1989) $\mathbf{s}^{1 / 2}=50-64 \mathrm{GeV}$ (discovery of the "desert")
- Large Electron-Positron Collider, Geneva (1988-2000): $\mathbf{s}^{1 / 2}=90 \mathrm{GeV}$ (LEP I, Z-factory), $\quad \mathbf{s}^{1 / 2}=200 \mathrm{GeV}$ (LEP II, WW factory)
- Stanford Linear Accelerator at SLAC, Stanford (1991-1998) $\mathbf{s}^{1 / 2}=90 \mathrm{GeV}$ (SLC, Z-factory)

SPEAR at SLAC

- Stanford Positron Electron Accelerator Ring (1974-1990), $s^{1 / 2}=3-7 \mathrm{GeV}$, Discovery of the J/Psi

Discovery of the Charm Quark

$\Psi(2 S) \rightarrow J / \Psi \pi^{+} \pi^{-} \rightarrow e^{+} e^{-} \pi^{+} \pi^{-}$

Quark-Pair Production

Resonant Rho production
\rightarrow later

$$
\begin{aligned}
& \text { similar to muon-pair production } \\
& \frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow c \bar{c}\right)=\frac{\alpha^{2} q^{2}}{2 s}\left|\frac{u^{2}+t^{2}}{s^{2}}\right|
\end{aligned}
$$

PETRA at DESY

- Positron Electron Tandem Ring Anlage (1978-1986), $\mathrm{s}^{1 / 2}=38 \mathrm{GeV}$, Discovery of Gluon Jets

predicted by QCD!!!

Standard Model of Particle Physics SS 2013

Tasso at PETRA

QED Test:
Bhabha scattering

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d}(\cos \theta)}=\frac{\pi \alpha^{2}}{s}\left(u^{2}\left(\frac{1}{s}+\frac{1}{t}\right)^{2}+\left(\frac{t}{s}\right)^{2}+\left(\frac{s}{t}\right)^{2}\right)
$$

Total Muon Pair Production C.S.

derivation:

$$
\begin{array}{ll}
\frac{d \sigma}{d t}=-\frac{2 \pi \alpha^{2}}{s^{2}} \frac{t^{2}+u^{2}}{s^{2}} & \begin{array}{l}
s+t+u=\sum m_{i}^{2} \approx 0 \\
\rightarrow u^{2}=t^{2}+s^{2}+2 t s
\end{array} \\
\frac{d \sigma}{d t}=-2 \pi \alpha^{2} \frac{2 t^{2}+s^{2}+2 \mathrm{ts}}{s^{4}} \\
\sigma=-\int_{-s}^{0} 2 \pi \alpha^{2} \frac{2 t^{2}+s^{2}+2 \mathrm{ts}}{s^{4}}=-2 \pi \alpha^{2} \frac{-2 / 3 \mathrm{~s}^{3}-s^{3}+s 3}{s^{4}}=\frac{4 \pi \alpha^{2}}{3 \mathrm{~s}}
\end{array}
$$

Myon Pair Production

PETRA accelerator (DESY)

Quark-Pair Production

Difficulty:

quarks and anti-quarks are experim. difficult to distinguish

$$
\begin{aligned}
& t=-\frac{s}{2}(1 \mp \cos \theta) \\
& u=-\frac{s}{2}(1 \pm \cos \theta) \\
& t^{2}+u^{2}=\frac{s^{2}}{2}\left(1+\cos ^{2} \theta\right)
\end{aligned}
$$

different signs for quarks and antiquarks
quarks and
antiquarks averaged!

similar to muon-pair production

$$
\frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow c \bar{c}\right)=\frac{\alpha^{2} q^{2}}{2 s}\left|\frac{u^{2}+t^{2}}{s^{2}}\right|
$$

Tristan Collider at KEK

1986-1989: $s^{1 / 2}=50-64 \mathrm{GeV}$ Search for the top in the "desert"

Standard Model of Particle Physics SS 2013

QED Tests in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions

$$
\begin{aligned}
& \begin{array}{l}
\text { Feynman } \\
\text { diagram } \\
\frac{1}{\sqrt{V}} \bar{u}\left(p_{3}\right)
\end{array} \quad-\frac{1}{\sqrt{V}} \bar{u}\left(p_{4}\right) \\
& \frac{1}{\sqrt{V}} u\left(p_{1}\right) \delta^{4}\left(p_{3}-p_{1},-q\right) \\
& \frac{-i g^{\mu \nu}}{q^{2}+i \varepsilon}
\end{aligned} \delta^{4}\left(p_{2}\right)
$$

Possible tests:

- universality of charges (leptons, quarks, ...)
- energy dependence of coupling ("running")
- test of perturbation theory
- Lorentz structure of coupling
- propagator effect \rightarrow new physics
- test crossing symmetries (\rightarrow gauge invariance)

Measurement of $R_{\text {had }}$

Test of Quark Charges

$$
R=\frac{e^{+} e^{-} \rightarrow \text { hadrons }}{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}
$$

Fig. 11.3 Ratio R of (11.6) as a function of the total $\mathrm{e}^{-} \mathrm{e}^{+}$center-of-mass energy. (The sharp peaks correspond to the production of narrov 1^{-}resonances just below or near the flavor thresholds.)

Crossing Symmetries

Figure 10.7 Experimental results for Compton scattering. The curves correspond to the Klein-Nishina formula (10.41) for photon energies $\omega=0.662 \mathrm{MeV}$ and $\omega=$ 1.25 MeV . The experimental data are from Hofstadter (1949) and Bernstein (1956)
(after Evans 1958).

The Low Energy Limit

Electromagnetic coupling at low energy:

$$
Q^{2}=-t=-\left(q^{u} q_{\mu}\right) \rightarrow 0
$$

Thompson scattering cross section $\quad \sigma_{t}=\frac{8 \pi}{3 r_{e}^{2}}=\frac{8 \pi}{3}\left|\frac{\alpha \lambda_{c}}{2 \pi}\right|^{2}$
used to determine α

The Low Energy Limit

Electromagnetic coupling at low energy:

$$
Q^{2}=-t=-\left(q^{\mu} q_{\mu}\right) \rightarrow m_{e}^{2}
$$

Thompson scattering cross section $\quad \sigma_{t}=\frac{8 \pi}{3 r_{e}^{2}}=\frac{8 \pi}{3}\left(\frac{\alpha \lambda_{c}}{2 \pi}\right)^{2}$
not dependent on energy! Used to determine α
General cross section:

$$
\frac{d \sigma}{d \Omega}\left(\gamma e^{-} \rightarrow \gamma e^{-}\right)=\frac{\alpha^{2}}{2 s}\left|\frac{-s}{u}+\frac{-u}{s}\right|
$$

two terms

Running of alpha ${ }_{\mathrm{em}}$

$$
\alpha(Q=0)=1 / 137 \longrightarrow \alpha(Q=90 \mathrm{GeV})=1 / 128
$$

self-energy corrections

alpha is not a constant!

vertex corrections

dressed charge!

- measure em. coupling for different (high) energies
- search for new physics effects at mass scale \wedge

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma(Q E D)}{d \Omega}\left(1+\frac{s}{\Lambda^{2}}\right)
$$

Lorentz-Structure of Electromagnetic Interaction

From Maxwell Equations:

$$
\partial_{\nu} \partial^{v} A^{\mu}(x)=e J^{\mu}(x) \quad \text { in QED: } \partial_{\mu} j_{V}^{\mu}=0 \text { (conservation of currents) }
$$

electromagnetic interaction described by vector currents!
Also true at high energies?

Vector Current:

$$
j_{V}^{\mu}=\bar{\psi} \gamma^{\mu} \psi
$$

Axial-vector Current:

$$
j_{A}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi
$$

scalar coupling:

$$
\lambda=\bar{\psi} \psi
$$

pseudoscalar coupling:

$$
\lambda=\bar{\psi} \gamma^{5} \psi
$$

- lead in general to different angular distributions!

LEP Collider

biggest electron-positron collider with up to 200 GeV centre of mass

4 experiments: ALEPH, DELPHI, L3, OPAL

LEP1: "Z-factory"

LEP2: "WW factory"

LEP Regime

Processes:

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \\
& \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}
\end{aligned}
$$

at LEP energies

radiative and electroweak effects
play an important role!

International Linear Collider

500 GeV electron $\times 500 \mathrm{GeV}$ positrons

Backup

Fermion-Fermion Scattering

$$
\begin{gathered}
S_{f i}^{(1)}=i e^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \delta^{4}\left(p_{3}-p_{1}-q\right) \delta^{4}\left(p_{4}+q-p_{2}\right)(2 \pi)^{8} \\
\cdot \frac{1}{V^{2}} \bar{u}\left(p_{3}\right) \gamma_{\mu} u\left(p_{1}\right) \cdot \frac{-g^{\mu \nu}}{q^{2}+i \epsilon} \cdot \bar{u}\left(p_{4}\right) \gamma_{\nu} u\left(p_{2}\right)
\end{gathered}
$$

particle-particle (here electron-proton) scattering

lowest oder perturbation theory: leading order graph (Born)

Gamma Matrices I

Gamma matrices γ^{μ} are chosen such that γ^{0} is hermitian while $\gamma^{k}(\mathrm{k}=1,2,3)$ are anti-hermitian

$$
\begin{aligned}
& \left(\gamma^{0}\right)^{+}=\gamma^{0},\left(\gamma^{0}\right)^{4}=1, \\
& \left(\gamma^{k}\right)^{+}=-\left(\gamma^{k}\right),\left(\gamma^{k}\right)^{4}=-1 \quad(k=1,2,3)
\end{aligned}
$$

We define γ^{5} as the hermitian matrix: $\gamma^{5}=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}, \quad\left(\gamma^{5}\right)^{2}=1$,
The 4×4 gamma matrices can be represented by (representation where γ^{0} is diagonal):

$$
\left.\gamma^{k}=\left(\begin{array}{cc}
0 & \underline{\sigma}^{k} \\
-\underline{\sigma}^{k} & 0
\end{array}\right), \quad \gamma^{0} \quad \begin{array}{cc}
\text { des } \\
& \beta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

With the 2×2 Pauli matrices:

$$
\underline{\sigma}^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \underline{\sigma}^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array} \left\lvert\, \quad \underline{\sigma}^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .\right.\right.
$$

Gamma matrices anti-commute: $\gamma^{i} \gamma^{k}+\gamma^{k} \gamma^{i}=0 \quad$ for $\mathrm{i} \neq \mathrm{k}$

Gamma Matrices II

$$
\begin{aligned}
& \gamma^{0}=\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right| \\
& \gamma^{1}=\left|\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right| \quad \gamma^{2}=\left|\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right| \quad \gamma^{3}=\left|\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right| \\
& \gamma^{5}=\left|\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right| \\
& \text { (in other representations } \\
& g^{9} \text { is diagonal) }
\end{aligned}
$$

