The XMASS Dark Matter Experiment in Kamioka, Japan:

Status and Results

Kai Martens Kavli IPMU The University of Tokyo

Outline

introducing the institute

- Dark Matter: setting the stage

- Kamioka Observatory: the preeminent underground science laboratory in Japan

- XMASS Experiment:

design
status
first results
future plans

- Liquid noble gas cleanup...)

(if time allows:

- Kavli IPMU:

KAVLI PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

one of the 5 original WPI centers:

- founded Oct. 1, 2007
- first institute in Todias Jan. 11, 2011

- first Kavli institute in Japan May 10, 2012 best evaluations among WPI centers...

July 3, 2012

(Solicitation 2007/03): Mandates:

secure research funding matching WPI funding
 > 30% non-Japanese
 > 200 staff members
 globally visible like Max-Planck, IAS, IHES with their long traditions

ministerial funding: 10(+5) years... Todai:

review criteria: science, globalization, interdisciplinary research, organizational reform

July 3, 2012

V L I INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

only six women among 72

*Argentina, Brazil, Canada

members have to be outside of Japan for 1-3 month/year

• We of course are aware this is not a true indicator of the "impact" of an institution, but in the absence of any better alternative:

institute	IPMU	IAS	KITP	YITP	Perimeter	ICTP
citation/ paper	7.6	7.3	8.1	6.5	9.6	4.5
#papers >50 citations	8	18	8	3	13	4

• We have provided an additional report on mathematics for more detailed review

July 3, 2012

Thomson Reuters, excluding reviews fields: astronomy, astrophysics, particle and fields, ultidisciplinary physics, mathematics, applied mathematics @ 3rd anniversary (Oct. 2010)

Kai Martens, Kavli

Early Observations: Oort & Zwicky 1932: Jan Oort (Leiden, Netherlands):

"measures" matter in galactic disk near sun from motion of nearby stars: 1M_o/375ly³ > 2m_{stars}

→ dark matter

Vera Rubin @ Carnegie Institution of Washington: rotation curves of galaxies 1975 AAS meeting 1980 paper

1933: Fritz Zwicky (Caltech, USA):

virial theorem: $\Sigma T = \frac{1}{2} \Sigma U$ \rightarrow galaxies in Coma cluster too fast for cluster's gravitational potential

→ dark matter

Kai Martens, Kavli IPMU

Spitzer Space Telescope • IRAC; SDSS ssc2007-10a

Dark Matter: It's out there ...

blue: DM, red: hot gas

http://cosmicweb.uchicago.edu/filaments.html

So What Are We Looking For?

→ massive ← if particle …

- collisionless: → no E/M interaction → no strong interaction at most: weakly interacting ???

New Scientist (2005/03/19): Michael Brooks: 13 things that do not make sense:

Maybe we can't work out what dark matter is because it doesn't actually exist. That's certainly the way Rubin would like it to turn out. "If I could have my pick, I would like to learn that Newton's laws must be modified in order to correctly describe gravitational interactions at large distances," she says. "That's more appealing than a universe filled with a new kind of sub-nuclear particle."

(Rubin as in: Vera Rubin)

favorites are:

- gravitating:

- cold:

July 3, 2012

neutralino, axion, Kaluza-Klein, gravitino

Dark Matter and the WIMP Miracle

WIMP denomination \rightarrow weak interaction ...

WIMP decoupling after BB:

velocity averaged annihilation cross-section for **GeV-TeV mass WIMPs**:

> $<\sigma v > = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ $\rightarrow \text{ correct DM density}$

$\begin{array}{cccc} 10^1 & 10^2 & 10^3 \\ m/T & & & \\ \end{array} \end{array} \quad \begin{array}{c} \text{TeV} \sim \text{SUSY partners ?!?} \\ \rightarrow \text{miracle ...} \end{array}$

WIMP Dark Matter Searches: Direct Detection

two types of interaction: spin dependent (odd isotopes), smaller cross section spin independent; σ ~ A² (coherent: whole nucleus)

July 3, 2012

Hints of Low Mass WIMPs DAMA/Libra: 250kg Nal(TI), scintillation

13 years of measurement

440g p-type Ge detector, ionization 442 live days

CRESST-II: 8x300g CaWO4, scintillation + phonon

July 3, 2012

CoGeNT:

The Current Situation:

July 3, 2012

(WIMP hypothesis:)

compatible: - spectra: CoGeNT/CRESST-II - modulations: DAMA/CoGeNT

tension: - Xe/all of the above - modulation amplitude (halo assumptions...)

The XMASS Experiment

Xe detector for weakly interacting MASSive particles Xe v-MASS detector Xe MASSive v-detector

Exploiting Xenon: - high mass number \rightarrow SI cross section - no long-lived radioactive isotope - good scintillation yield: ~ 46ph/keV - high density (liquid): 3g/cm³ - 48% odd isotopes (natural) \rightarrow SD cross section

July 3, 2012

- $\beta\beta$ candidate: ¹³⁶Xe \rightarrow ¹³⁶Ba+2e+2.48MeV

Ultimately: 10t fiducial volume multi-purpose detector:- neutrino mass:ββ- Dark Matter:WIMP limited by:- solar neutrinos:pp, ⁷Be

• SOIAL ITEULTITIOS (water tank in Hall C designed to hold this...)

XMASS Progression:

the current incarnation: 800kg WIMP detector (100kg fiducial), 80cm

the PAST: 100kg **prototype**, (3kg fiducial), 30cm proof of principle

> 100kg reference: arXiv:0912.2405

July 3, 2012

the next step: 5 ton total, > 1.5ton fiducial

Kai Martens, Kavli IPMU

24t, $ββ + ν_{o}$ (10t fiducial) **2.5m**

detector technology advantages:

the far future:

simple
scalable
self-shielding

ultimately: 24t (10t fid.) 2.5m ???

The XMASS Collaboration

Kamioka Observatory, ICRR, University of Tokyo:

Y. Suzuki, M. Nakahata, S. Moriyama, M. Yamashita, Y. Kishimoto, A. Takeda, K. Abe, H. Sekiya, H. Ogawa, K. Kobayashi, K. Hiraide, B. Yang, A. Shinozaki, K. Hieda, O. Takachio, D. Umemoto, N. Oka, K. Nakagawa IPMU, University of Tokyo: K. Martens, J.Liu Kobe University: Y. Takeuchi, K. Miuchi, K. Hosokawa, A. Murata, Y.Ohnishi Tokai University: K. Nishijima, F. Kusaba S. Tasaka **Gifu University:** Yokohama National University: S. Nakamura, I. Murayama, K. Fujii Miyagi University of Education: Y. Fukuda STEL, Nagoya University: Y. Itow, K. Masuda, H. Uchida, H. Takiya **Sejong University:** Y.D. Kim, N.Y. Kim Y.H. Kim, M.K. Lee, K.B. Lee, J.S. Lee **KRISS**:

42 collaborators, 10 institutions, 2 countries

Hall C in Kamioka: XMASS

water in tank: 10m high 10m Ø Hall C: 15m,21m,15m (h,d,w) 宇宙線研究所 神岡宇宙素粒子研究施設 July 3, 2012 Kai Martens, Kavli IPMU 17

Shielding Against External Radiation

S

Rn retarding outside air si

poor"

hall Rn-"

Rh

gamma radiation: xenon \rightarrow self-shielding:

fast neutrons: water tank 11m high (10m water) 10m Ø active: µ-veto

fast Neutron MC:

Kai Martens, Kavli IPMU

19

Building the Inner Detector 1:

Building the Inner Detector 2:

Feb ⇔ 2010

artens, Kavli

Electronics:

Super-Kamiokande ATM:

12 bit ADC/TDC integration: -100ns – +300ns 1.2 μs window

July 3, 2012

CAEN V1751 8 ch/board bandwidth 500MHz, sampling rate 1GS/s resolution 10bit 1.2 µs window

new: FADCs

Low BG PMT Development:

BG: biggest worry \rightarrow **PMT**

great development:

U < 1.0 Th< 0.94 K < 9.68 Co = 4.47±0.34

630 hexagonal + 12 round) PMTs:

Hamamatsu R10789: QE 28-39%

XMASS photocathode coverage: 62.4%

July 3, 2012

Xe Distillation: ⁽⁸⁵⁾Kr Removal

otherwise: extensive materials validation before construction:

 $\begin{array}{rcl} \mbox{IPMU Lab:} & & \\ \mbox{U, Th} & \rightarrow \mbox{HP-Ge} \leftarrow \mbox{few 100ppt} & \\ & \rightarrow \mbox{ICP-MS} \leftarrow \mbox{1ppq}^* & \\ \mbox{Kr} & \rightarrow \mbox{API-MS} \leftarrow \mbox{1ppt}^* & \\ \mbox{* after concentration} & \end{array}$

experience: detector stable w/o: - routine getter operation - active Rn removal

K.Abe et al, Astroparticle Physics 31(2009), p290

capacity of XMASS Xe distillation system: 6kg/h; did 1 ton in ~ 1 week \rightarrow (3.3±1.1)ppt

July 3, 2012

Kai Martens, Kavli IPMU

hall C distillation system: (used before filling detector)

XMASS Calibration System:

"internal" γ calibration for XMASS: - ⁵⁷CO (122keV) ← main anchor of energy scale - ²⁴¹Am (59.5keV), ¹⁰⁹Cd (88keV), ⁵⁵Fe (5.9keV)

"external" (hose) - ⁶⁰Co, ¹³⁷Cs - ²⁵²Cf neutron calibration (needs FADC)

July 3, 2012

source

exchange

gate valve

reconstruction:

10²

10

10 15

⁵⁷Co Calibration: data ۳ 10 240

30

20

10

-10

-15 -10 -5 10 15 y [cm]

BG: The Likely Culprits:

unexpected BG observed from "surface between" PMTs:

α,β from "local" materials ?!

Al seal for PMT window: ²³⁸U and ²¹⁰Pb (not in secular equilibrium)

Gore-Tex (light barrier) under PMT rim: may contain up to 6% modern carbon

July 3, 2012

Background and Its Sources 1:

entries/day/p

entries/day/p

higher energies (0.1-3MeV):

understood: γ from PMTs consistent w/Ge

histogram: data MC: ²¹⁰Pb on Al

MC: PMT gammas

npe

mid energies (5keV-1MeV):

understood: α,β on surface consistent w/Ge

npe

Background < 5keV (XMASS design thres.)

under study ...

one hypothesis: some ¹⁴C in Gore-Tex??? (modern carbon)

if so:

what assumption about light propagation and generation INSIDE the Gore-Tex material???

shown:two assumptions:both:generation: LXetop:0.3mm att. lengthbot:0.1mm att. length

wrong tree? (as in: barking up the ...)

(XMASS design thres.)

histogram: data MC: ²¹⁰Pb on Al MC: ¹⁴C in Gore-Tex

口的代 公司社

The Good News: BG (Low), LY high

(still optimizing: reduce leakage of surface events into FV)

high light yield (LY) \rightarrow low threshold \rightarrow <u>go for light WIMPs</u>

(heavy WIMPs \rightarrow large A \rightarrow large cross section \rightarrow to come)

Light WIMPs: Full Volume, Low Threshold

playing to our strength:

full volume 4 hit threshold

= 835kg = 6.8 days

backgrounds considered:

no OD activity
no afterpulse activity
Cherenkov (⁴⁰K in photocathode)
ringing, radioactivity

our limit: maximally allowed cross section: MC prediction < data

cuts applied:

ID trigger only timing RMS < 100ns q(20ns)/q(total) < 0.6 $\pm \Delta t > 10ms$

systematics accounted for: L_{eff}, energy resolution & scale, trigger efficiency, cuts

The star

 \rightarrow

 \rightarrow

Cherenkov Cut

Cherenkov light emission in PMT glass (⁴⁰K, ...)

Cherenkov photons emitted "immediately": \rightarrow timing structure by PMT timing resolution (~3.5ns) scintillation events: \rightarrow time constant τ ~ 25ns (low energy γ and nucl. recoil)

cut parameter:

<u>charge(first 20ns)</u> charge(total)

keep < 0.6

efficiency varies with p.e. range: 40% - 70%

July 3, 2012

Kai Martens, Kavli IPMU

80

120

 100°

140

160

180

XMASS Full Volume (835kg): Low Mass WIMPs

data set: 6.8 days of low threshold data

July 3, 2012

XMASS Result 1:

10-39

10-40

10-41

10-42

10-43

10-44

DAMA w/o channeling

CoGeNT2010 Exclude

All Systematic Error XMASS Stat, 90%CL

CoGeNT2010 CoGeNT2011

> CDMS II CDMS2011 XENON 100

> > 10

GeV

12

14

Ξ

systematic contributions: (in order of importance)

- L_{eff} uncertainty *

energy resolution

- trigger efficiency

energy scale

- Cherenkov cut

July 3, 2012

* following arXiv 1203.1589 (Xe100)

18

preliminary

XMASS Full Volume (835kg): Pseudoscalar by Axioelectric Effect

originally pursued to explain DAMA vs. nucl. recoil; rate: $R[kg^{-1}d^{-1}] = 1.2 \times 10^{19} A^{-1} g^{2}_{a\bar{e}e} m_{a}^{a} p \sigma_{pe}$

but: photoelectric cross section $\sigma_{pe} \sim 1/v \dots$

Prospects with Fiducialization:

July 3, 2012

Refurbishment:

in preparation:

- latter half of this year

lines of attack:

- Cu surface cleanup → electropolish to "rm -r U* Th*"

- light barrier (Cu cover) for PMT AI seal ← MC study

- remove Gore-Tex (presumed guilty until proven innocent ...)

Conclusions

- XMASS 800kg completed first commissioning phase:
- exceptional light yield: 14.7 PE/keV
- still analyzing data (stay tuned...)
 backgrounds largely understood

preparing for detector refurbishment:

- surface cleaning
- modification of inter-PMT spaces

→ resume data taking with <u>reduced surface BG</u> & FADC - early next year.

<u>Results</u> (so far): light WIMP limit, axio-electric cross section limit more to come → stay tuned...

Starting to plan for 5 ton version of XMASS: XMASS 1.5

July 3, 2012

also:

On Rn Removal from Liquid Phase

tested: charcoal trap (NIM A 661 (2012) p. 50-57)

new idea: charge sweep

in solids: atoms in lattice → electron/hole trapped in fluids: atoms moving \rightarrow "ions" drifting

n=2 τ21 n=1

Kai Martens, Kavli IPMU

GaAs n=2 Ing. +G appAs Dots n=1 Nongeminate $\hbar \omega_{pump}$

July 3, 2012

Info from Relevant Literature:

Radiation Phys&Chem 74 (2005) 152: The mobility of positive and negative ions in liquid xenon (W.F. Schmidt, O. Hilt et al.) → TMSi+: 8cm/s @ 40kV/cm , O2- 10cm/s @ 15kV/cm

NIM A 555 (2005) 205: Mobility of thorium ions in liquid xenon (K. Wamba et al.) \rightarrow ion drift 1cm/s @ 4kV/cm

thesis Oliver Hilt: Electronische und ionische Leitungsprozesse in flüssigem Xenon

Hole Drift and LXe Flow:

(holes would likely be relevant for Rn removal...)

hole mobility @ 170K: 3.7e-3 cm2V-1s-1 electric field strength: $3kV/cm \rightarrow v_{h+} = 11cm/s$

positive ion mobility: ~ 0.1e-3 – 0.2e-3 cm2/V/s \rightarrow v₁₊ ~ 0.5 cm/s

cleaning volume: 1cm x 4cm cross section, 1l/min = 1000cm³/min; 4cm² cross section \rightarrow flow ~ 4cm/s

maximal drift time for positive ions: 2s \rightarrow flow carries 8cm....

total length ~ 10cm \rightarrow collision time constant ~ 0.5 sec (2cm)

Hole Attachment Kinematics:

k₁: reaction constant for charge transfer from hole to molecule/atom; change in number n_{Rn} of Rn atoms in a hole concentration n_{h} :

 $dn_{Rn} = n_h k_{+} n_{Rn} dt$

solution: $n_{Rn}(t) = n_0 \exp(-k_1 n_n t) \rightarrow time constant: \tau = 1/(k_1 n_n)$

little known in IXe; guidance from measurements in other materials $(CCI_4^+ \rightarrow C_n H_m^+ \text{ in different liquid alkanes...}): \rightarrow k_{\downarrow} \sim 1e-11 \text{ cm}^3/\text{s}$ from before: $\tau < 0.5\text{s}$ (2cm flow)

 $\rightarrow n_{h} > 1/(k_{+}\tau) = 2e11/cm^{3}$

Creating e⁻/h⁺ Pairs in Liquid Xenon

Hole drift: ~10cm/s @ 3kV/cm; we need 2e11h⁺/cm³ \rightarrow need to produce 2e12h⁺/s/cm²

mean energy required to produce e-/h+ pair: W = 15.4eV

⁵⁵Fe: 6keV / 15eV = 400 h⁺ \rightarrow ~ 5 GBq ²⁰⁷Bi: 1.6MeV/15eV = 110,000 h⁺ \rightarrow ~ 18MBq

IF all go into 1cm2 ...

Conclusion: not workable!

Solution: Hole injection by field emission; done in IAr & IXe: IEEE Transactions Vol. EI-19, Feb. 1984; Arii + Schmidt

Hole Injection in IXe:

From: IEEE Transactions on Electrical Insulation Vol. EI-19, Feb 1984 K. Arii & W.F. Schmidt: Current Injection and Light Emission in Liquid Argon and Xenon in a Divergent Electric Field

problem with article above: "... A quantitative evaluation of our data is not possible since no control existed over the geometry of the tip and its change during the injection process."

but: the principle is okay !!! \rightarrow hole injection by field emission from tip, \rightarrow resulting current stable.

last time: need 2e12h⁺/cm²/s; 40cm² (later) $\rightarrow \sim 10^{14}$ h⁺/s = 16µA; 1.6e-9A/tip $\rightarrow 10000$ tips

Q: uniform hole current over all volume ???

Pics from SNU, Seoul, Korea:

10µm 5µm Figure 1 Copper micro-tips formed by high current pulse

electroplating. (a) Top view, (b) Cross view

from: IEEE, Vacuum Nanoelectronics Conference 2006, p101+102: Field Emission Characteristics of Carbon Nanocoils Grown on Copper Micro-tips W.Y. Sung, W.J. Kim, S.C. Yeon, S.M. Lee, H.Y.lee, Y.H. Kim \leftarrow in contact

Summary:

- drifting complicated molecules and simple atoms in both LXe and LAr proven and measured

 - injecting both holes (positive charges) and electrons into both LXe and LAr proven and measured

conclusion:

 method to "move" impurities (electronegative = very easy...) from main liquid(!) circulation stream to smaller secondary stream for further treatment (e.g. evaporation and hot getter)

questions: - can Korean Cu micro-tips be replicated?
are they stable over time under operating conditions

note: electrons can be generated by shining UV on metal... that alone could take care of electronegative impurities