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GTvS spacetime

(Godel metric describes a pressure-free perfect fluid with negative cosmological constant and rotat-
ing matter, and the Tipler-van-Stockum (TvS) spacetime 15 being generated by a rapidly rotating

mfimte cylinder. In both cases the metric can be written as

ds® = +gi(r) dt” + 2geo(r) dtdd — goo(r) d9® — grrdr® — goodz”.

Distortions of the “lengths” phi and t
in the radial direction
1s an example of warping.

And an example of time-warping 1s
the Robertson-Walker big-bang metric.
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Negative time:

. . . . . 7
A dynamical approach to GTvS causality examines the purely azimuthal null-curve with ds= =0.

One gets

 BroE /8t 81 8e0
P+ = \/ : (3)
809

where the + refers to co-rotating and counter-rotating lightlike signals. The coordinate time for a

co-rotating path 1s

AT, = A9 Sos : S
8o T \/ 8ie T 8op8ut

As g4¢ goes from positive to negative, the light-cone tips such that the azimuthal closed path is

traversed in negative time

— 2 |89l

AT, = -
8yt \/3,?4, + 8¢9 8t

(890 < 0] . (3)

The quantum returns to its origin before it left, marking the existence of a CTC.
Note that the Lorentzian signature 1s maintained even as gep switches sign as long as the
argument of the square-root, proportional to —g4, remains positive definite. Note also that the

Lorentzian signature 1s maintaimed as g4 sWitches to a negative value as long as g5 > /—Zep 817
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Lightcone slopes:

The clear discriminator of the arrows of time are the slopes of the local light-cone,

1 8w _ 18Fv-—8
" 8ip Lt/ 84 r Bit

s£(r) = (rg) ' = 0
Notice that if g4, and gi are positive. then regardless of the sign of g;4. the light-cones (worldlines)
remain 1n the first and second quadrants of the (7,¢) plane (as 1s the case of the Minkowslki Light-

cone). Thus, for a backward flow of time 8oy (01, g¢+) must go through zero and become negative.
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Product of lightcone slopes:

It 15 useful to consider the product of slopes

(8)

For time to move backwards one of the world lines defiming the light-cone must move into the
lower half of the t — ¢ plane. From (8) one can see that (1) this happens smoothly if gey goes
through zero: (1) happpens discontinuously if g4 goes through zero; (1) that a smooth change m

the sign of g:p cannot move either slope through zero to the domain of negative time.

With the focus here on a smooth change of sign for geg. it 1s useful to examine the slopes at

small gop. One finds

1
Ir g

s+(leading order in gge) = 9)

=]

o

|2

L]

[

It 1s clear that the slope 54 goes through zero with gge, leaving the first quadrant and moving
mto the fourth quadrant. With mcreasing ¢, time for the associated co-rotating world line runs
backwards. On the other hand, the sign of s_ remains unchanged, and time for the associated
counter-rotating world line continues to run forward. In the following we will apply simular

arguments to different scenarios of asymmetrically warped spacetimes.
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GTvS - the good, bad, and ugly

It 15 mstructive to mention the visceral arguments against the relevance of the Godel and Tv5S
metrics. First of all, they are not asymptotically flat, and so presumably cannot occur within our
Universe; rather, they must be our Universe, which contradicts observation. Secondly, the initial
conditions from which they can evolve are either non-existent (Godel) or sick (TvS). Furthermore,
the TvS metric assumes an infimitely-long cylinder of matter, which 1s unphysical. On the positive
side. literally, the Einstein equation endows p = T = (R} — %R}_,-’EI Gy (with the geometric RHS
determined by the metric) with a positive value everywhere; there 15 no need for "exotic” p < 0
matter. A further positive feature 1s the simplicity of finding the CTC by travel along the periodic

variable ¢.
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A linear path off the brane

We may replace the periodic coordinate of GTvS with the unbounded x coordinate, and onut the

v and z coordinates for brevity. Then one obtains
ds® = gt (1, v) dt” + 28 (u,v) dxdt — goe(u,v) dx” — du” —dv* . (12)

(Notice in particular the sign convention on the coefficient of dx?.)

The speed of light at any point will depend on (i, v) through the metric elements. The restric-

tion to Lorentzian signature implies that
—g6 = —Det(guv) = gt (1,v) gux(u,v) + 85,(4,v) > 0. (13)
World lines for lightlike travel (null lines) satisfy
0=guluv)+2gm(u,v) i — goelu, v) -t =, (14)

The solutions to (14) for the analogs of co-rotating and counter-rotating light speed at fixed (u, V)

are _
_ gl V=55

: 15
3.1:1: L“"F;I ( }
On the brane, ¥ must equal ¢ = 1. so we again choose g4(0.0) = g+(0,0) =1 and g.,(0,0) = 0.

I+
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Causal properties:

Let us examine more closely the causal implications of Eq. (15). We assume that g 1s every-

where positive, so that (1) coordinate time f 1s everywhere timelike, and (1) no singularities are
mtroduced 1n 55 orin g;. As shownin Eqn. (8), the sign of g4 does not influence the causal
structure, and for definiteness we take it to be positive semudefimite. It 1s the sign of the metric
element g, that has smooth causal sigmificance.

Simular to the causal analysis of the GTvS model of Section (2), we write the two slopes of

the light-cone as

so(uv)= f;i:t}_l — Bxx(U,V) _ (16)

gee(,v) £/ 85 (1,v) + guel1,v) g1 (14, V)

From this, one readily gets

T (17)

St
It 15 easily seen that when 2., 2... and g, are all positive, the slopes are of opposite sien, and are
Y Bxx- Bt Btx P P opPp g

connected to the Minkowski metric in the smooth linut g, — 0. Thus, with g4 and g, assumed
positive, ime flows 1n the usual manner if gy 1s positive. Furthermore, with gy = 0, we have
sion(gs ++/—86) = *. so that from Eq. (15), one has &, > 0, and i_ < 0. Thus, a positive g,
(as in the Lorentz metric) offers the standard situation with time flowing forward and velocity

having either sign.
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Causal properties (continued) :

On the other hand. if gy, 15 negative, then Eq. (17) shows that one light-cone slope has changed
sign. The small gy, limut of the slopes

s+(leading order in gy ) = (18)

_ g
B

reveals that 1t 15 the positive slope which has passed through zero to become negative, signifying
a world line moving from the first quadrant, through the x-axis, into the fourth quadrant where
times flows backwards for mcreasing x. With both slopes negative, one has that 14 (gw < 0) < 0.

Thus, travel with increasing time 1s 1n the negative x direction, whale travel with decreasing time

15 1n the positive x direction. We summarize the causal properties of the metric (12) in Table 1.

x>0 | g <0
iy =0
(Ax = 0)
<0 | i_<0
(Av<0) | (Ax<0)
i <0
(Ax = 0)

Table 1: Solution types for metric (12), and their casual properties. In particular, no solution

exists for motion backwards 1n time along the negative-x direction.
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CTC “construction”:

The CTC which we investigate 1s the following: the signal travels first from the brane at
(u#,v) = (0,0) to the hypershice at (u;,vy). then from (u;,v;) to the hyperslice at (u7,v; ), and
finally back from (u2,v2) to the point of origin (0,0) on the brane (see Fig. 1). While on the
(u1,v1) hyperslice, the signal travels a distance AX in the positive x-direction over a negative
time ATy = —|ATy|. While on the (u3,v>) hyperslice, the signal travels back an equal negative
distance —AX 1n time AT to close the spatial projection of the worldline on the brane. To close
the worldline on the brane, it 1s necessary that 75 + I7 < 0. (But not equal to zero, as we allow
for small positive travel times from the brane at (u,v) = (0,0) to (11, v1). from (uy,v1) to (u2,v2),

and back from (u2,v2) to (0,0))) "our brane"

m
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Negative time:

The transit time (AT7 )+ for light to travel a positive distance AX = 0 at constant (uy,vy), as

viewed from the brane. 1s

AT AX "
(ATh)+ dt =[ dy — S=t) . (19)
Jo Joo gex(ur,vi) £/ —gslir,v1)

AX SI‘:':“LUIJ
g"-’fl-iul :-111;1 + ‘\'f_g'ﬁ (Hl :-1':1:-I

The integrations on df and dx are trivial because the metric does not depend on the coordinate

time f or brane variable x. According to Eq. (13), the Lorentz signature 1s maintained as long as

gg:-_',: = gy (—gx). We have shown that the world line for x; lies below the x-axis when gy < 0,

and so we require gy(u1,v1) < 0 1 order to gain negative time A(7])4+ during travel on the
(11.v1) hyperslice. From here on, we will simply use the label AT} for thus negative A(T})

solution on the (17, vy ) hyperslice:

ATy = A(T1); = AX g..l'l'iull":l:'l . .
geclt1. v) + v/ —gslu1, )
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Return path:

To close the worldline, the lightlike signal must return from positive AX to the orgin x =0
i a time AT less than or equal to |AT7|. If this were to occur 1 a negative time, then we would
have g, < 0 and % = 0. Table 1 shows that there 15 no solution of tlus type available. So the
return path must take place in positive time, with © <~ 0. Reference again to Table 1 reveals that
the return solution 1s . In principle, the i_ solution on the (w1, v1 ) hyperslice provides a return
path. However, it 15 easy to show that the return tiume AT? for this solution exceeds |AT7| and so

fails to close the world line. Thus, we must go to a second hyperslice at (u2,v2). We have

0 o 1
AT = {[ d.x=—ﬂl’] g:tt[\ulﬁ¢,] .
JAX gtz v2) — 1/ —gelu2,v2)

with gy (22, v2 ) of erther sign.
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CTC condition(s) :

The necessary condition relating the outgoing and return paths of a CTC 1s that the sum AT +

AT be less than zero. Equivalently, the CTC conditions are that

—EHQHEJ'IJ gﬂ"-iul r-l"lj =0
gex(U2,v2) —/—gelu2.va)  geelutr,v1) ++/—gelt1.v1) '

.g."i'_"i (H].I Lllj < D L]
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CTCs in N+1, N=23,....
We have seen GTvS CTCs in N=2 (phi,r).

Therefore, we expect metrics in N=3,4,... with CTCs.
Eqgn (22) shows that this is so.

The recipe that emerges from Eqn (22) is simply:

(i) allow gxx to change sign as a function of another spatial variable;
(i) take gix nonzero;
(iii) arrange a suitably “fast” return path.

AND, there is an aesthetic input:
choose a metric that is physically motivated.

MPI-KernPhysik. Heidelbera. May 2009 Tom Weiler, Vanderbilt University, USA




Causality with one warped dimension:

We consider the five-dimensional asymmetrically-warpad line element with a single extra dimen-

sion which we label as “u™:
ds® =di* = ¥ a*(u) (dx')* —du?, (24)

1=1,2 3 with our brane located at the u = 0 submanifold. With no loss of generality, we may
take a(u) to be positive.

Boosting,  ds” =y {(1—p’03)di” +2p (1 - of) dvdr’' — (a3 - p*)dx"} . (32)
This looks promising, of the GTvS form.

The warped spacetime of (24) allows shortcut geodesics connecting spacelike-separated events
on the brane if |a(u)| < |a(0)| for any u # 0. However, the metric (24) exhibits a global time func-
tion . Thus, taken by 1tself this spacetime 1s causally stable and does not allow for CTCs.

The failure of (24) to support a CTC can also be seen 1 our CTC equations (22). Since

g = o 1n (24) cannot be negative without violating the assumed Lorentzian signature, the CTC

condition (22b) cannot be satisfied. This failure can be traced to the

tact that the Lorentz transtormation was just a coordinate change, and so provided a change of

view, but no new physics. What 1s needed 1s a nonzero g;, that cannot be removed by a linear
transformation among brane coordinates. Introducing the 6th dimension provides a solution, first
because it allows a superlununal return path along the additional 6th dimension, and second be-
cause 1t allows g¢x(u,Vv) to be “hard-wired ™ into the metric so that it 1s not removable by a linear
coordinate transformation on the brane.
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CTCs with two warped extra dimensions:

A natural 6D generalization of (24) can be realized by assuming that the metric for the u- and

v dimensions exluibits the simple form 1n (24), but in different Lorentz frames. This assumption
seems natural for any spacetime with two or more extra dimensions, since there 1s no preferred
Lorentz frame for the bulk, from the viewpoint of the brane.

This choice also ensures superluminal
travel to as well as from the brane, as well as a Minkowskian metric on the brane. To construct

this 6-dimensional metric explicitly, let us denote by [, the “relative velocity” between the two
Lorentz frames in which the u and v dimensions assume the simple form (24), respectively. We
icorporate the “u-frame™ shice at v = 0 by retaiming the warp factor a(u) on the brane coordinate
dx, and we incorporate the “v-frame™ slice at u = 0 by writing the boosted metric 1n Eq. (32) with

the warp o) now replaced by n(v). The resulting full 6-dimensional metric then has the form

ds” = { [1— P’ (v)] @17 + 2Puwver(u) [1 =7 (v)] dxdt — o> () (0 (v) — P d2” } —du® —av”.
(34)
One easily finds that —Det = —gg = a*(u)n>(v). That this determinant is independent of B, is

consistent with the interpretation of f,,, as a kuind of boost parameter. Of special importance for the

existence of the CTC 1s the off-diagonal metric element gy, which 1s nonzero for n(v) #= 1 (1e.,

off the brane), and the metric element gy, which 1s of indeterminate sign.




One simple and successful choice 1stoset oy = 1 and n; = 1.1.e_, to take the outgoing path on

the u = 0 hyperslice and the return path on the v = 0 hyperslice. With these choices, (37) reduces
to or < (p—m1) /(1 —pny). This 1s guaranteed to be satisfiable by (36).

With u = 0, Eq. (34) reduces to (32) with n‘z (v} replacing o (u):

d5” =0 =Yy { [1 — B (V)]d7 + 2Py [l =17 (v)]dxdt — [ (v) — By ]dx” } —du” —dv*. (38)

Thus we see explicitly that choosing 11 < By, on the u = 0 hyperslice sets g, < 0. so that our

outgoing path necessarily accumulates negative ime (original frame in Table 2). On the return

path, we set v = 0. Then the 6D metric of Eq. (34) reduces to (24), repeated here:
ds®|y=g = dt* — a* (u)dx* — du”: (39)

It 15 clear that this return path can be made arbitrarily brief by choosing o> arbitrarily small. The

CTC 15 revealed.




Stress-energy tensor and energy conditions

As a check on the consistency of the picture, we should diagnose the stress-energy tensor which
sources the extra-dimensional metric, for any pathologies. In particular, we will be mterested 1n
the resulting matter distributions on and off the brane. Thus, our task 1s to calculate the Einstein
tensor

1
GF" = RF" Y-l R, (40)

from the spacetime metric of Eq. (34), and then to obtain the stress-energy tensor Ty, via the

Einstein equation
1

T = 8 1Gy

Gy (41)

We note that 1n general, T contains contributions from matter, fields. and cosmological constant

on and off the brane. and from brane tension on the brane.
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Then, with a diagonal metric with g;; = 1 ((Gaussian-normal coordinates), one obtains for the

nonzero elements of T% .

p=T5 and p/=-T7. (48)

These are the relations appropnate for the v = 0 slice of our metric, since one sees in Eq. (39) that
the v = 0 metric 1s mamifestly diagonal with g = 1.

It 15 not difficult to find a functional form for the warp factors o and ) which conserves some
of the energy conditions, at least on the brane. One such example is given by au(u) = 1/(u” +¢%)
and n(v) = 1/(v*+¢?). For this case the elements of the Einstein tensor on the v = 0 slice are
shown as a function of u 1n Fig. 2. The null, weak and dominant energy conditions are conserved

on the brane, while the strong energy condition 1s viclated both on the brane and in the bulk.

A good discussion/display of various energy-conditions in S. Carroll’s GR book.
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Energy figure

Figure 2: Nonzero elements of the Einstein tensor G*, (in arbitrary units): G‘:"IEI =Gl = G—"’ =
G*, = G',, on the v = 0 slice, as a function of u. Assumed are warp factors a(u) = 1/( u” +c?)
and n(v) = 1/(v*+¢*), with ¢ = 1. We find that the weak and dominant energy conditions are
violated in the bulk, while all energy conditions with the exception of the SEC are satisfied on the

brane.
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Energy (philosophic discussion)

The negative energy density that afflicts many wormhole and CTC solutions 1n four dimen-
sions 15 avoided on the brane 1n the example for an extra-dimensional CTC presented here. How-
ever, p becomes negative as one moves away from the brane mto the bulk, so that the WEC and
DEC are violated off the brane, while the NEC remaimns conserved. We have successfully con-
structed a metric exhibiting CTCs 1n an extra-dimensional spacetime by “moving  the negative
energy density from the brane to the bulk. One might even speculate that the negative energy
density 1n the bulk 1s related to the compactification of the extra dimensions, or possibly to the
repulsion of Standard matter from the bulk.

One also sees in Fig_ (2) that G’y = G&, = G*, are equal to GY% on the v = 0 slice. This equality
amounts to a dark energy or cosmological constant equation of state for the y-, 1-, and v-directed

pressures, namely, w/ = p/ /p = —1. There may be some intriguing physics underlying this result.

It 15 also possible that an anthropic argument applies here: Life may evolve only where

energy density 1s positive. Then lifeless bulk regions of negative energy density can communicate
their existence to living beings only via geometry, perhaps mediated by the exchange of gravitons

or appropriately named, “sterile” neutrinos.
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Summary

GTvS CTGCs easily generalize to more dimns
(general CTC conditions on metric given)

There exist spatially warped metrics in 6D

(not 5D) exhibiting CTCs

*
These CTCs challenge “chronology protection”,

and may enable iner-temporal communication

*
Intriguing energetics,

positive on brane,

negative in bulk

* . . . . .
More implications, more models to investigate
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Energy conditions:

There 1s considerable theoretical prejudice that stable Einstein tensors should satisfy certamn
“energy conditions” relating energy density p and directional pressures p/_ The null, weak, strong

and dominant energy conditions state that

NEC : p+p/=0, V). (42)
p=0; and P+P'iil'-_“-‘{}, j. (43)
p+p52¢], vj. and p—|—2p33[]_ (44)

J

p=0: and p/€lp,—p], ¥j. (43)
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