TeV scale Mirage Mediation in Next-to-MSSM

Takashi Shimomura (Niigata Univ., Japan/MPIK, Heidelberg, Germany)

based on

T. Kobayashi, T. S., T. Takahashi, arXiv:1203.4328 T. Kobayashi, H. Makino, K–I. Okumura, T. S., T. Takahashi, arXiv:1204.3561

Table of Talk

1. Introduction

i. Fine-tuning and Supersymmetry ii. Little Fine-tuning and Mediations iii. Naturalness and Next-to-Minimal SSM iv. False vacua in SUSY models 2. TeV Scale Mirage Mediation 3. (Old) Numerical Results 4. Summary & Future Works

Introduction

The Standard Model (SM) has been successful to explain almost all of experimental results so far.

In particular, the gauge interactions of the electroweak sector agree with precise measurements very well.

The only mysterious part of the SM is the physics of ElectroWeak Symmetry Breaking (EWSB)

How is the EW symmetry broken? Probably the (fundamental) Higgs mechanism Why is the EWSB scale O(100) GeV? New Physics...

Fine-tuning in the Standard Model

In the SM, the EW symmetry is broken by spontaneous symmetry breaking, i.e. the Higgs mechanism.

The mass of the Higgs receives large quadratic radiative corrections from UV physics (e.g. Planck/GUT)

$$\underbrace{ \begin{array}{c} h^{0} \\ \hline t \end{array} }^{l} \underbrace{ \begin{array}{c} h^{0} \\ \hline t \end{array} }_{\overline{t}} \longrightarrow \\ \mu^{2}_{eff} = \mu^{2} + \frac{3Y_{t}^{2}}{8\pi^{2}}\Lambda^{2} \\ \Lambda: \text{ cutoff scale} \\ \end{array}$$

A very strong fine-tuning is required to stabilize the EW scale. $(100)^2 (\text{GeV}^2) \sim (10^{16})^2 - (10^{16})^2 (\text{GeV}^2)$ hierarchy problem

> <u>Such fine-tuning is "unnatural" and</u> <u>new physics is required to stabilize the scale</u>

Supersymmetry

Supersymmetry (SUSY) is a very attractive candidate of new physics for the hierarchy problem.

Each of the SM particles has a <u>SUSY partner</u> which has the same quantum charge but a different spin.

<u>e.g.) MSSM</u>	SM particles	SUSY particles	
quarks	$Q, \; q$	$ ilde{Q},~ ilde{q}$	squarks
leptons	L, e	$ ilde{m{L}},~ ilde{m{e}}$	sleptons
Higgses	$H_1, \ H_2$	$ ilde{H}_1, \ ilde{H}_2$	Higgsinos
gauge bosons	B, W, G	$ ilde{B}, \ ilde{W}, \ ilde{G}$	gauginos
<u>Higgse</u>	<u>S</u>		
	$H_1 = \begin{pmatrix} H_1^0 \\ I \end{pmatrix}$	$H_2 = \begin{pmatrix} H_2^+ \end{pmatrix}$ ch	arged Higgs
	(H_1^-)	H_2^0 ne	utral Higas

Supersymmetry

The quadratic divergences cancel due to SUSY partner contributions, and only log divergence remains.

The hierarchy problem can be solved if SUSY scale is around TeV.

SUSY also provides

Dark Matter candidate (if R-parity is conserved)
 Grand Unification of the gauge interactions
 Quantum Gravity (?) (superstring)

Single sector SUSY breaking

Suppose SUSY breaking is transferred directly like $\mathcal{L} = F\Phi\Phi o \langle F
angle \Phi\Phi = m\Phi\Phi$ F : SUSY breaking field $\Phi : SM$ particles or their partners

The supertrace formula predicts the very light SUSY particles.

 $Str(-1)^F m^2$ = (boson mass)² – (fermion mass)² = 0 SUSY particles the SM particles

SM fermion mass = SUSY particle mass Such light SUSY particles already excluded SUSY breaking must be mediated indirectly

Two Sector Paradigm

SUSY world requires two sector and (some) mediation mechanism.

"visible sector"

"hidden sector"

Supertrace does not hold anymore.

soft SUSY br. terms are generated

Mediation mechanism

- supergravity (Planck scale)
- gauge interaction (intermediate scale)
- superconformal anomaly (Planck scale)

The little hierarchy problem Kim and Nilles, '84 If SUSY scale is much above the TeV scale, another new finetuning is introduced.

In the MSSM, the EWSB scale is determined by

$$-rac{1}{2}m_Z^2\simeq m_{H_2}^2+\mu^2, \hspace{0.3cm} (ext{for large } ext{tan}eta$$
) $m_{H_2}^2: ext{soft SUSY br. mass}$

The little fine-tuning is needed if $|m_{H_2}^2|,\ \mu^2\gg m_Z^2$ the little hierarchy problem

SUSY suffers this problem because the LHC has been pushing up the bound on SUSY scale.

This is a problem of mediation mechanisms, not SUSY!

The little hierarchy problem

(Martin, "susy primer")

ex) mSUGRA mediation
Universal soft masses at GUT scale
RG running to the EWSB scale
Heavy SUSY particles at the EWSB scale

large soft mass of the Higgs $m_{H_u}^2\sim -m_{ ilde{t}}^2\sim -M_{ ilde{g}}^2\gg 1.5~{ m TeV},$

then, the little fine-tuning is needed

 $-rac{1}{2}m_Z^2\simeq m_{H_2}^2+\mu^2,$ = (1 TeV)² – (1 TeV)²

Mediations

We need another mediation mechanism in which
The soft masses are different in each particles.
The soft masses evolve over short scale.

One of such possibilities is Mirage Mediation.

Naturalness of the MSSM

The MSSM Lagrangian is given by three potentials $\mathcal{L}=K|_D+W|_F+V_{soft},$

soft SUSY breaking terms

 $V_{soft} = m^2 \phi^2 + A \phi^3 + M \tilde{B}^2,$ scalar soft A-term gaugino soft m,A,M are EWSB or TeV scale

supersymmetic interactions $W = Y \Phi_1 \Phi_2 H + \mu H_1 H_2,$ μ can be the Planck/GUT scale or keV scale, whatever...

There are no reason why μ is around the EWSB scale, but it must be...

Fayet, '75, '76, '77; Nilles, Srednicki, Wyler, '83 Frere, Jones, Saby, '83; See review by Ellwaner'10 Next-to-Minimal SSM The NMSSM is an extension of the MSSM with a singlet and Z_3 parity. $\overline{\mathcal{W}} \supset \mu \hat{H}_1 \cdot \hat{H}_2 \longrightarrow \overline{\mathcal{W}} \supset \lambda \hat{S} \hat{H}_1 \cdot \hat{H}_2 + rac{\kappa}{2} \hat{S}^3,$ No dimensionful parameter in the SUSY int. Only dimensionful parameters are soft breaking terms. $V_{soft} = m^2 \phi^2 + A \phi^3 + M \tilde{B}^2,$ • The EWSB occurs when the three Higgses develop vevs. • μ term is generated by the EWSB. $\mu_{eff} = \lambda \langle S
angle$ The vevs are determined by the soft breaking terms. SUSY breaking scale determines the EWSB scale!

The Higgs mass

In the SM,
$$V = -m^2 H^2 + \frac{\lambda}{4} H^4 \longrightarrow m_h^2 \sim \lambda v^2$$

In the MSSM,

$$V = m_{H_1}^2 H_1^2 + m_{H_2} H_2^2 + B\mu H_1 H_2$$
$$+ \frac{1}{8} (g_1^2 + g_2^2) (H_1^2 - H_2^2)^2$$
$$\longrightarrow m_{h_1}^2 \sim (g_1^2 + g_2)^2 v^2 \cos^2 2\beta = M_Z^2 \cos^2 2\beta$$
I25 GeV Higgs mass needs large radiative corrections
$$\Delta m_{h_1}^2 = \frac{3m_t^4}{4\pi^2 v^2} \left(\log \frac{m_{\tilde{t}}^2}{m_t^2} + X_t \left(1 - \frac{1}{6} X_t^2 \right) \right) \quad X_t = A_t^2 / m_{\tilde{t}}^2$$

the heavy stops/large A-term increase the little hierarchy

The Higgs mass in the NMSSM

In the NMSSM,

$${\cal W} \supset \lambda \hat{S} \hat{H}_1 \cdot \hat{H}_2 + rac{\kappa}{3} \hat{S}^3,$$

This superpotential gives a new quartic coupling $V \supset (kS^2-\lambda H_1H_2)^2+\lambda^2S^2(H_1^2+H_2^2)$

then the Higgs mass becomes

 $m_{h_1}^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta - \lambda^2 / \kappa^2 v^2 \cdots$

+ (radiative corrections)

the Higgs mass can be heavier than in the MSSM

the little hierarchy becomes milder in the NMSSM

short summary

Why is the EWSB scale O(100) GeV? This is one of the most important questions at this time.

 tachyonic Higgs mass is very sensitive to UV physics the EWSB scale is unstable to radiative corrections SUSY can solve this problem

 the LHC has been pushing the bound up and up The little hierarchy problem?
 This is a problem of mediations
 It can be solved by the Mirage Mediation

 the naturalness problem? tension between the Higgs mass and the little hierarchy? Don't worry. the NMSSM can solve it.

2. Mirage Mediation

Anomaly Mediation (AMSB)

Landall, Sundrum, '99; Giudice, Luty, Murayama, Rattazzi, '98

the visible and the hidden sectors are physicaly separated.

• only gravity propagates in the bulk.

- Interactions are purely gravitational.
- Scale invariant if no SUSY mass terms

The scale inv. is broken by super-Weyl anomaly

gaugino:

scalar:

$$M_a = {b_a g_a^2 \over 16 \pi^2} {\langle F
angle \over M_{pl}} \ m_q^2 = -{1 \over 4} (eta_g \gamma_g' + eta_y \gamma_y') {\langle F
angle^2 \over M_{pl}^2}$$

 $rac{\langle F
angle}{M_{pl}} = m_{3/2}$

Modulus Mediation

Kaplunovsky, Luis, '93; Brignole, Ibanez, Munoz, '94 Kobayashi, Suematsu, et al, '95

String theory is consistently defined in 10 dimensions.

- Superfluous 6 dimensions should be compactified in small size.
- moduli appear which parameterize shape and size of the extra-dimensions.
- In KKLT setup, moduli can be stabilized, then SUSY is broken. Kachru, Kallosh, Linde, Trivedi, '03

 F-term of modulus fields are suppressed and comparable to the AMSB contributions.

the AMSB and the MMSB can contribute together

Mirage Mediation

Choi, Falkowski, Nilles, Olechowski, Pokorski '04 Choi,Falkowski,Nilles,Olechowski, '05 Endo, Yamaguchi, Yoshioka, '05

The mirage mediation is a mixture of the modulus mediation and the anomaly mediation.

gaugino soft mass

$$M_a(M_{GUT}) = M_0 + \frac{b_a}{16\pi^2}g^2(M_{GUT})m_{3/2}$$

Mirage scale : special energy scale in the mirage med. $M_{
m mir}=rac{M_{GUT}}{(M_{pl}/m_{3/2})^{lpha/2}}$

M_{pl}: Planck scale

the ratio of the anomaly med. to the modulus med. $lpha \equiv rac{m_{3/2}}{M_0 \log(M_{pl}/m_{3/2})}$

the gaugino masses are unified at the mirage scale $M_a(M_{ m mir})=M_0$ @ 1-loop This result is independent of lpha.

This unification is just due to a cancellation between the anomaly med. and RGE's contributions.

A terms and scalar soft masses

$$\begin{split} A_{ijk}(M_{GUT}) &= a_{ijk}M_0 - (\gamma_i + \gamma_j + \gamma_k)\frac{m_{3/2}}{8\pi^2} \\ m_i^2(M_{GUT}) &= c_iM_0^2 - \dot{\gamma_i}(\frac{m_{3/2}}{8\pi^2})^2 - \frac{m_{3/2}}{8\pi^2}M_0\theta_i, \end{split}$$
 where

 a_{ijk} & c_i : modular weight γ_i , θ_i : functions of gauge and Yukawa coupl.

At the mirage scale, the same cancellation works

 $egin{aligned} A_{ijk}(M_{ ext{mir}}) &= \overline{a_{ijk}}M_0\ m_i^2(M_{ ext{mir}}) &= c_i M_0^2 \end{aligned}$

if the corresponding Yukawa coupling is small or the following condition is satisfied,

 $a_{ijk} = c_i + c_j + c_k = 1$

TeV scale Mirage

Choi, Jeong, Kobayashi, Okumura, '06 & '07 Kitano, Nomura, '05

Kobayashi, Makino, Okumura, T.S., Takahashi; '12 Asano, Higaki; '12

The Higgs sector is extended in the NMSSM

$$H_1 = egin{pmatrix} H_1^0 \ H_1^- \end{pmatrix} \quad H_2 = egin{pmatrix} H_2^+ \ H_2^0 \ H_2^0 \end{pmatrix} \quad S_2$$

The soft SUSY breaking terms are
$$V_{soft}=m_{H_1}^2H_1^\dagger H_1+m_{H_2}^2H_2^\dagger H_2+m_S^2S^\dagger S \ -\left(\lambda A_\lambda SH_1H_2-rac{1}{3}\kappa A_\kappa S^3
ight)$$

For the TeV scale mirage, the modular weights are assigned $c_{H_1}=1,\ c_{H_2}=c_S=0$ and for stops

$$c_{t_L} = c_{t_R} = 1/2$$

At the TeV mirage scale,

and

$$A_\kappa=m_S^2=m_{H_2}^2=0$$
 @ 1-loop

Ambiguity comes from a Kahler metric of UV theory $\delta A_\kappa \simeq {\cal O}(M_0/8\pi^2)$ $\delta m_{S,H_2}\simeq {\cal O}(\kappa^2 M_0^2/8\pi^2)$

which can not be determined without UV theory.

The little hierarchy is ameliorated because

 $A_{\lambda} \simeq m_{H_1} \simeq M_0$

cancel each other

The EWSB scale is almost determined by m_{H2} and insensitive to μ paramter

> • $tan\beta=3$ is enough for the little hierarchy, which increase the Higgs mass. • µ can be as heavy as O(400) GeV

3. (Old) Numerical Results

Setup for the mirage mediation

free parameters

 $\lambda, \kappa, \tan eta, M_0, A_{\kappa}$

the stationary conditions determine $m_{H_2},\ m_S,\ \mu=\lambda\langle S
angle$

illustrating examples

 $egin{aligned} A_\kappa &= -100 \; {
m GeV} \ && \ aneta &= 3, \; 5 \ M_0 &= 1.2, \; 1.5 \; {
m TeV} \end{aligned}$

The higgs mass is evaluated at pole m_t and should be +5 GeV at m_z

12年7月4日水曜日

$aneta=5,\ M_0=1.2\ { m TeV}\ \ \mu=M_0/ aneta=100-300\ { m GeV}$

$aneta=5,\ M_0=1.2\ { m TeV}\ \ \mu=M_0/ aneta=100-300\ { m GeV}$

$aneta=5,\ M_0=1.2\ { m TeV}\ \ \mu=M_0/ aneta=100-300\ { m GeV}$

$\tan \beta = 5, \ M_0 = 1.5 \ { m TeV}$

 $aneta=3,\;M_0=1.2\;{
m TeV}$ $\mu=M_0/ aneta=400-700\;{
m GeV}$

 $aneta=3,\;M_0=1.2\;{
m TeV}$ $\mu=M_0/ aneta=400-700\;{
m GeV}$

12年7月4日水曜日

$aneta=5,\ M_0=1.2\ { m TeV}$

$\boxed{(\lambda,\kappa)}$	(0.10, 0.30)	(0.41, 0.15)	(0.61, 0.20)
m_{h1}	$117 { m GeV}$	$105 { m GeV}$	94 GeV
m_{h2}	$997 {\rm GeV}$	$149 \mathrm{GeV}$	$136 \mathrm{GeV}$
m_{h3}	$1237 \mathrm{GeV}$	$1250 \mathrm{GeV}$	$1256 \mathrm{GeV}$
m_{a1}	$389 \mathrm{GeV}$	$190 \mathrm{GeV}$	$210 \mathrm{GeV}$
m_{a2}	$1235 \mathrm{GeV}$	$1249 \mathrm{GeV}$	$1255 \mathrm{GeV}$
$g_{ZZh}^2/g_{\rm SM}^2$	1.00	0.91	0.89
m_{Hd}^2	$1.44 \times 10^6 \mathrm{GeV}^2$	$1.45 \times 10^6 \mathrm{GeV}^2$	$1.71 \times 10^6 \mathrm{GeV}^2$
m_{Hu}^2	$2.64 \times 10^4 \mathrm{GeV}^2$	$-1.56 \times 10^4 \mathrm{GeV}^2$	$-1.43 \times 10^4 \mathrm{GeV}^2$
m_S^2	$-4.42 \times 10^5 \mathrm{GeV}^2$	$-6.89 \times 10^3 \mathrm{GeV}^2$	$-9.25 \times 10^3 \mathrm{GeV}^2$
$m_{\tilde{t}_1}$	$839 \mathrm{GeV}$	$839 \mathrm{GeV}$	807 GeV
$m_{\tilde{t}_2}$	1080 GeV	$1078 \mathrm{GeV}$	$1058 \mathrm{GeV}$
μ	$168 { m GeV}$	$240 \mathrm{GeV}$	286 GeV

$aneta=5,\ M_0=1.2\ { m TeV}$

$\boxed{(\lambda,\kappa)}$	(0.10, 0.30)	(0.41, 0.15)	(0.61, 0.20)
m_{h1}	$117 { m GeV}$	105 GeV si	nglet 94 GeV
m_{h2}	997 GeV	149 GeV	136 GeV
m_{h3}	1237 GeV d	own-type Higgs	$1256 \mathrm{GeV}$
m_{a1}	389 GeV	$190 \mathrm{GeV}$	$210 \mathrm{GeV}$
m_{a2}	1235 GeV d	own-type Higgs	$1255 \mathrm{GeV}$
$\int g_{ZZh}^2/g_{ m SM}^2$	1.00	0.91	0.89
m_{Hd}^2	$1.44 \times 10^6 \mathrm{GeV}^2$	$1.45 \times 10^6 \mathrm{GeV}^2$	$1.71 \times 10^6 \mathrm{GeV}^2$
m_{Hu}^2	$2.64 \times 10^4 \mathrm{GeV}^2$	$-1.56 \times 10^4 \mathrm{GeV}^2$	$-1.43 \times 10^4 \mathrm{GeV}^2$
m_S^2	$ -4.42 \times 10^5 \text{GeV}^2$	$-6.89 \times 10^3 \mathrm{GeV}^2$	$-9.25 \times 10^3 \mathrm{GeV}^2$
$m_{\tilde{t}_1}$	$839 \mathrm{GeV}$	$839 \mathrm{GeV}$	$807 \mathrm{GeV}$
$m_{\tilde{t}_2}$	$1080 \mathrm{GeV}$	$1078 \mathrm{GeV}$	1058 GeV
μ	$168 \mathrm{GeV}$	$240 \mathrm{GeV}$	286 GeV

$aneta=3,\ M_0=1.2\ { m TeV}$

(λ,κ)	(0.1, 0.3)	(0.41, 0.15)	(0.61, 0.20)
m_{h1}	$110 \mathrm{GeV}$	$113 { m GeV}$	$122 \mathrm{GeV}$
m_{h2}	$1293 {\rm GeV}$	$261 { m ~GeV}$	$234 \mathrm{GeV}$
m_{h3}	$1484 \mathrm{GeV}$	$1339 \mathrm{GeV}$	$1346 \mathrm{GeV}$
m_{a1}	$478 {\rm GeV}$	$246 \mathrm{GeV}$	$273 \mathrm{GeV}$
m_{a2}	$1293 \mathrm{GeV}$	$1337 { m ~GeV}$	$1345 \mathrm{GeV}$
$g_{ZZh}^2/g_{\rm SM}^2$	1.00	1.00	0.96
m_{Hd}^2	$1.44 \times 10^6 \mathrm{GeV}^2$	$1.45 \times 10^6 \mathrm{GeV}^2$	$1.87 \times 10^6 \mathrm{GeV}^2$
m_{Hu}^2	$9.97 \times 10^4 { m GeV}^2$	$4.97 \times 10^3 \mathrm{GeV}^2$	$-5.69 \times 10^4 \mathrm{GeV}^2$
m_S^2	$-1.04 \times 10^6 \mathrm{GeV}^2$	$-3.05 \times 10^4 \mathrm{GeV}^2$	$-4.70 \times 10^4 \mathrm{GeV}^2$
$m_{ ilde{t}_1}$	$840.2~{\rm GeV}$	$842.6~{\rm GeV}$	$788 \mathrm{GeV}$
$m_{\tilde{t}_2}$	1073.5 GeV	1067.9 GeV	1032 GeV
μ	$251 { m GeV}$	414 GeV	542 GeV

 μ increases for small tan β

Summary

We have studied the NMSSM with TeV scale mirage mediation. We showed

- The cancellation mechanism works well between m_{H1} and μ parameter.
- The little hierarchy can be ameliorated to O(10) % with large μ parameter.
- The lightest Higgs mass can be 115–130 GeV for M₀=1.2–1.5 TeV.
- The lightest Higgs boson is almost the SM-like.
- The lightest CP-odd Higgs boson is relatively light.
- The heaviest CP-even/odd Higgs bosons has mass close to M₀.

Future Works

We have showed only illustrating examples. More detailed analyses should be done.

 allowed region search with experimental constraints as well as false vacua constraints.

Dark matter physics for singlino/higgsino LSP.

more concrete analysis on the Higgs sector.

Some of works are in progress but you are welcome to join in the collaboration.

Danke Schön!