Minimal neutrino texture in neutrino mass matrix

Yusuke Shimizu

MPIK, Heidelberg

May 13, 2013

Seminar @MPIK, Heidelberg

based on:

M. Fukugita, Y. S., M. Tanimoto and T. T. Yanagida, Phys. Lett. B **716** (2012) 294.

Y. S., R. Takahashi, M. Tanimoto, arXiv:1212.5913 (accepted in Phys. Lett. B).

May 13, 2013

Plan of my talk

1 Introduction

- **2** Large θ_{13} and neutrino mass matrix
- 3 Toward minimal texture

1. Introduction

Standard Model (SM): $SU(3)_C \times SU(2)_L \times U(1)_Y$

Particle	First	Second	Third	Mixing matrix	
Quark	$\begin{pmatrix} u \\ d \end{pmatrix}_{L}$	$\begin{pmatrix} c \\ s \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b \end{pmatrix}_{L}$	CKM matrix	
	u_R^c	c_R^c	t_R^c	(Cabibbo-Kobayashi-Maskawa)	
	d_R^c	s_R^c	b_R^c		
Lepton	$\begin{pmatrix} \nu_e \\ e \end{pmatrix}_i$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mu}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{L}$	PMNS matrix	
	e _R	μ_R^{c}	τ_R^c	(Pontecorvo-Maki-Nakagawa-Sakata)	

1. Introduction

Standard Model (SM): $SU(3)_C \times SU(2)_L \times U(1)_Y$

Particle	First	Second	Third	Mixing matrix	
Quark	$\begin{pmatrix} u \\ d \end{pmatrix}_{L}$	$\begin{pmatrix} c \\ s \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b \end{pmatrix}_{L}$	CKM matrix	
	u_R^c	c_R^c	t_R^c	(Cabibbo-Kobayashi-Maskawa)	
	d_R^c	s_R^c	b_R^c		
Lepton	$\begin{pmatrix} \nu_e \\ e \end{pmatrix}_i$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mu}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{I}$	PMNS matrix	
	e _R	μ_R^{c}	τ_R^c	(Pontecorvo-Maki-Nakagawa-Sakata)	

Generation (Flavor) Mysteries (Problems)

1. Introduction

Standard Model (SM): $SU(3)_C \times SU(2)_L \times U(1)_Y$

Particle	First	Second	Third	Mixing matrix	
Quark	$\begin{pmatrix} u \\ d \end{pmatrix}_{L}$	$\begin{pmatrix} c \\ s \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b \end{pmatrix}_{L}$	CKM matrix	
	u_R^c	c_R^c	t_R^c	(Cabibbo-Kobayashi-Maskawa)	
	d_R^c	s_R^c	b_R^c		
Lepton	$\begin{pmatrix} \nu_e \\ e \end{pmatrix}_i$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mu}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{I}$	PMNS matrix	
	e_R^c	μ_R^c	τ_R^c	(Pontecorvo-Maki-Nakagawa-Sakata)	

Generation (Flavor) Mysteries (Problems)

Masses of elementary particles are different each generation.

1. Introduction

Standard Model (SM): $SU(3)_C \times SU(2)_L \times U(1)_Y$

Particle	First	Second	Third	Mixing matrix	
Quark	$\begin{pmatrix} u \\ d \end{pmatrix}_{L}$	$\begin{pmatrix} c \\ s \end{pmatrix}_{L}$	$\begin{pmatrix} t \\ b \end{pmatrix}_{L}$	CKM matrix	
	u_R^c	c_R^c	t_R^c	(Cabibbo-Kobayashi-Maskawa)	
	d_R^c	s_R^c	b_R^c		
Lepton	$\begin{pmatrix} \nu_e \\ e \end{pmatrix}_i$	$\begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{\mu}$	$\begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}_{I}$	PMNS matrix	
	e_R^c	μ_R^c	τ_R^c	(Pontecorvo-Maki-Nakagawa-Sakata)	

Generation (Flavor) Mysteries (Problems)

Masses of elementary particles are different each generation.

• Lepton flavor mixing is quite different from quark one.

Introduction

Summary

Neutrino Oscillation

 $\label{eq:normalized_states} \begin{array}{l} \bullet \quad \text{Neutrino mass hierarchies:} \\ \text{Normal} \rightarrow m_1 < m_2 < m_3. \\ \text{Inverted} \rightarrow m_3 < m_1 < m_2. \\ (\text{Quasi-degenerated} \rightarrow m_1 \sim m_2 \sim m_3) \end{array}$

• Lepton flavor mixing matrix: $|\nu_{\alpha}\rangle = U_{\alpha i}|\nu_i\rangle$ ($\alpha = e, \mu, \tau, i = 1, 2, 3$),

$$\begin{split} U &\equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\rho} & 0 \\ 0 & 0 & e^{i\sigma} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\rho} & 0 \\ 0 & 0 & e^{i\sigma} \end{pmatrix} \end{split}$$

Experiments indicate large $\theta_{13}!!$

• Experimental result by Daya Bay @Neutrino 2012

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \text{ (stat)} \pm 0.005 \text{ (syst)}.$

Consistent with RENO, Double Chooz, and T2K experiments.

Global fit of the neutrino oscillation:

D. V. Forero, M. Tortola and J. W. F. Valle, arXiv:1205.4018 [hep-ph].

parameter	best fit	2σ	3σ	
$\sin^2 \theta_{12}$	0.320	0.29-0.35	0.27-0.37	
$\sin^2 \theta_{\rm rel}$	0.613 (0.427)	0.38-0.66	0.36-0.68	
SIII 023	0.600	0.39-0.65	0.37-0.67	
$\sin^2 \theta$	0.0246	0.019-0.030	0.017.0.022	
SIII 0 <u>1</u> 3	0.0250	0.020-0.030	0.017-0.055	
$\Delta m_{\rm sol}^2 ~[10^{-5} {\rm eV}^2]$	7.62	7.27-8.01	7.12-8.20	
$ A = 2$ $ [10-3] = \sqrt{21}$	2.55	2.38-2.68	2.31-2.74	
$ \Delta m_{\rm atm} $ [10 'ev]	2.43	2.29-2.58	2.21-2.64	

• $\sin \theta_{13}$ is nearly Cabibbo angle:

 $\sin \theta_{13} = 0.15 \pm 0.01, \quad \sin \theta_C = 0.225 \equiv \lambda.$

• $\sin \theta_{13}$ is nearly Cabibbo angle:

 $\sin\theta_{13} = 0.15 \pm 0.01, \quad \sin\theta_C = 0.225 \equiv \lambda.$

The relation between masses and flavor mixing angles:

$$\sqrt{rac{m_d}{m_s}}\simeq 0.225\simeq \sin heta_C.$$

• $\sin \theta_{13}$ is nearly Cabibbo angle:

 $\sin \theta_{13} = 0.15 \pm 0.01, \quad \sin \theta_C = 0.225 \equiv \lambda.$

The relation between masses and flavor mixing angles:

$$\sqrt{rac{m_d}{m_s}} \simeq 0.225 \simeq \sin heta_C.$$

Neutrino masses and flavor mixing angles are related each other!!

$$\begin{split} &\sqrt[4]{\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}} = 0.416 \simeq \mathcal{O}(\sqrt{\lambda}) \quad \Rightarrow \quad \sin^2 \theta_{23}, \\ &\sqrt{\frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}} = 0.173 \simeq \frac{\lambda}{\sqrt{2}} \quad \Rightarrow \quad \sin \theta_{13}. \end{split}$$

Our purpose

• Building the neutrino mass texture with large θ_{13} .

We present two textures.

- 3 × 3 Dirac neutrino mass texture.
 M. Fukugita, Y. S., M. Tanimoto and T. T. Yanagida, Phys. Lett. B **716** (2012) 294.
- 3 × 2 Dirac neutrino mass texture.
 Y. S., R. Takahashi, M. Tanimoto, arXiv:1212.5913 (accepted in Phys. Lett. B).

2. Large θ_{13} and neutrino mass matrix

• Texture with $\sin \theta_C = \sqrt{m_d/m_s}$: 2 parameters

S. Weinberg, HUTP-77-A057, Trans.New York Acad.Sci.38:185-201, 1977.

$$M_d = \begin{pmatrix} 0 & A \\ A & B \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{m_d m_s} \\ \sqrt{m_d m_s} & m_s \end{pmatrix}$$

Extend to 3 generations: 3 parameters
 H. Fritzsch, Phys. Lett. B73 (1978) 317; Nucl. Phys. B115 (1979) 189.

$$\begin{split} M_d &= \begin{pmatrix} 0 & A_d & 0 \\ A_d & 0 & B_d \\ 0 & B_d & C_d \end{pmatrix}, \quad M_u = \begin{pmatrix} 0 & A_u & 0 \\ A_u & 0 & B_u \\ 0 & B_u & C_u \end{pmatrix}, \\ V_{us} &\simeq \sqrt{\frac{m_d}{m_s}} - \sqrt{\frac{m_u}{m_c}} \simeq 0.185, \quad V_{cb} \simeq \sqrt{\frac{m_s}{m_b}} - \sqrt{\frac{m_c}{m_t}} \simeq 0.065. \\ & \text{so good} & \text{too large} \end{split}$$

Fritzsch texture does not work in quark sector...

Apply to lepton sector

M. Fukugita, M. Tanimoto, T. Yanagida, Prog. Theor. Phys. 89 (1993) 263.

The charged lepton and Dirac neutrino mass matrices:

$$m_E = egin{pmatrix} 0 & A_\ell & 0 \ A_\ell & 0 & B_\ell \ 0 & B_\ell & C_\ell \end{pmatrix}, \quad m_{
u D} = egin{pmatrix} 0 & A_
u & 0 \ A_
u & 0 & B_
u \ 0 & B_
u & C_
u \end{pmatrix}.$$

- We assume that the right-handed Majorana neutrino mass matrix is proportional to unit one: $M_R = M_0 \mathbf{1}$.
- The left-handed Majorana neutrino mass eigenvalues:

$$m_i = \left(U_{\nu}^T m_{\nu D}^T M_R^{-1} m_{\nu D} U_{\nu} \right)_i.$$

Pontecorvo-Maki-Nakagawa-Sakata(PMNS) mixing matrix:

$$U_{ extsf{PMNS}} = U_\ell^\dagger Q U_
u, \quad Q = egin{pmatrix} 1 & 0 & 0 \ 0 & e^{i\sigma} & 0 \ 0 & 0 & e^{i au} \end{pmatrix}$$

The neutrino mixing matrix elements

$$\begin{split} & U_{\nu}(1,1) = \sqrt{\frac{m_{2D}m_{3D}(m_{3D}-m_{2D})}{(m_{2D}+m_{1D})(m_{3D}-m_{2D}+m_{1D})(m_{3D}-m_{1D})}}, \\ & U_{\nu}(1,2) = -\sqrt{\frac{m_{1D}m_{3D}(m_{3D}+m_{1D})}{(m_{2D}+m_{1D})(m_{3D}-m_{2D}+m_{1D})(m_{3D}+m_{2D})}} \simeq \sqrt{\frac{m_{1D}}{m_{2D}}} = \sqrt{\frac{m_{1}}{m_{2}}}, \\ & U_{\nu}(1,3) = \sqrt{\frac{m_{1D}m_{2D}(m_{2D}-m_{1D})}{(m_{3D}-m_{1D})(m_{3D}-m_{2D}+m_{1D})(m_{3D}+m_{2D})}} \simeq \frac{m_{2D}}{m_{3D}} \sqrt{\frac{m_{1D}}{m_{3D}}} = \sqrt{\frac{m_{2}}{m_{3}}} \sqrt{\frac{m_{1}}{m_{3}}}, \\ & U_{\nu}(2,1) = \sqrt{\frac{m_{1D}(m_{3D}-m_{2D})}{(m_{2D}+m_{1D})(m_{3D}-m_{1D})}}, & \qquad \uparrow \\ & U_{\nu}(2,2) = \sqrt{\frac{m_{2D}(m_{3D}+m_{1D})}{(m_{2D}+m_{1D})(m_{3D}-m_{2D})}}, & \qquad Because of seesaw mechanism. \\ & U_{\nu}(2,3) = \sqrt{\frac{m_{3D}(m_{2D}-m_{1D})}{(m_{3D}+m_{2D})(m_{3D}-m_{1D})}} \simeq \sqrt{\frac{m_{2D}}{m_{3D}}} = \sqrt{\frac{m_{2}}{m_{3}}}, \\ & U_{\nu}(3,1) = -\sqrt{\frac{m_{1D}(m_{2D}-m_{1D})(m_{3D}+m_{1D})}{(m_{3D}-m_{2D}+m_{1D})(m_{3D}-m_{2D})}}, \\ & U_{\nu}(3,2) = -\sqrt{\frac{m_{2D}(m_{2D}-m_{1D})(m_{3D}-m_{2D}+m_{1D})}{(m_{3D}+m_{2D})(m_{3D}-m_{2D}+m_{1D})}(m_{2D}+m_{1D})}}, \\ & U_{\nu}(3,3) = \sqrt{\frac{m_{3D}(m_{3D}+m_{1D})(m_{3D}-m_{2D}+m_{1D})}{(m_{3D}+m_{2D})(m_{3D}-m_{2D}+m_{1D})(m_{3D}-m_{2D})}}}. \end{split}$$

Lepton mixing matrix elements

M. Fukugita, Y. S., M. Tanimoto and T. T. Yanagida, Phys. Lett. B 716 (2012) 294.

Free parameter: m_1 , σ , τ

$$\begin{split} U_{e2} &\simeq -\left(\frac{m_1}{m_2}\right)^{1/4} + \left(\frac{m_e}{m_\mu}\right)^{1/2} e^{i\sigma}, \\ U_{\mu3} &\simeq \left(\frac{m_2}{m_3}\right)^{1/4} e^{i\sigma} - \left(\frac{m_\mu}{m_\tau}\right)^{1/2} e^{i\tau}, \\ U_{e3} &\simeq \left(\frac{m_e}{m_\mu}\right)^{1/2} U_{\mu3} + \left(\frac{m_2}{m_3}\right)^{1/2} \left(\frac{m_1}{m_3}\right)^{1/2} \end{split}$$

Charged lepton contribution:

$$\begin{pmatrix} \frac{m_e}{m_{\mu}} \end{pmatrix}^{1/2} \simeq 0.0695, \qquad \qquad \sin^2 \theta_{23} \simeq \sqrt[4]{\frac{\Delta m_{sol}^2}{\Delta m_{atm}^2}} = 0.416 \simeq \mathcal{O}(\sqrt{\lambda}), \\ \left(\frac{m_{\mu}}{m_{\tau}}\right)^{1/2} \simeq 0.244. \qquad \qquad \sin \theta_{13} \simeq (\sin \theta_{23})^3 \sin \theta_{12} \simeq 0.158.$$

Neutrino mass hierarchy: Normal hierarchy

Yusuke Shimizu

Neutrino less double beta decay

• m_1 is restricted by θ_{12} :

CP violation in lepton sector

$$J_{CP} = \operatorname{Im} \left[U_{\mu 3} U_{\tau 3}^* U_{\mu 2}^* U_{\tau 2} \right].$$

If θ_{12} , θ_{23} , θ_{13} are more precise, σ and τ are more restricted and J_{CP} is more predictive.

3. Toward minimal texture

Before reactor experiments were reported θ_{13} ($|U_{e3}| \equiv \sin \theta_{13}$), the tri-bimaximal mixing (TBM) V_{tri-bi} was good scheme.

$$egin{aligned} & U_{\mathsf{PMNS}} = V_{\mathsf{tri-bi}} = egin{pmatrix} rac{2}{\sqrt{6}} & rac{1}{\sqrt{3}} & 0 \ -rac{1}{\sqrt{6}} & rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{6}} & -rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \ \end{pmatrix}, \ & |U_{e2}| = rac{1}{\sqrt{3}}, \quad |U_{e3}| = egin{pmatrix} 0 \ -rac{1}{\sqrt{3}} & rac{1}{\sqrt{2}} \ \end{pmatrix}, & |U_{e3}| = rac{1}{\sqrt{2}}. \end{aligned}$$

The left-handed Majorana neutrino mass matrix:

$$M_{\nu}^{\text{TBM}} = \frac{m_1 + m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{m_2 - m_1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \frac{m_1 - m_3}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

TBM is realized by non-Abelian discrete group.
 H. Ishimori, T. Kobayashi, H. Okada, Y. S., and M. Tanimoto,
 JHEP 0904 (2009) 011; Lect. Notes Phys. 858 (2012) 1.

May 13, 2013

We consider deviation from tri-bimaximal mixing

We discuss three cases as 1-2, 1-3, 2-3 mixing deviation from tri-bimaximal one.

- W. Rodejohann and H. Zhang, Phys. Rev. D 86 (2012) 093008.
- A. Damanik, arXiv:1206.0987 [hep-ph].
 - Case I: 1-2 mixing deviation from tri-bimaximal one.

$$\begin{split} U_{\mathsf{PMNS}} &= V_{\mathsf{tri-bi}} \begin{pmatrix} \cos\phi & \sin\phi & 0\\ -\sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix},\\ |U_{e2}| &= \left| \frac{2\sin\phi}{\sqrt{6}} + \frac{\cos\phi}{\sqrt{3}} \right|, \quad |U_{e3}| = 0, \quad |U_{\mu3}| = \frac{1}{\sqrt{2}}. \end{split}$$

 $|U_{e3}| = 0$, then unfavored.

We consider deviation from tri-bimaximal mixing

Case II: 1-3 mixing deviation from tri-bimaximal one.

$$\begin{aligned} U_{\text{PMNS}} &= V_{\text{tri-bi}} \begin{pmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{pmatrix}, \\ |U_{e2}| &= \frac{1}{\sqrt{3}} , \quad |U_{e3}| = \left| \frac{2\sin \phi}{\sqrt{6}} \right|, \quad |U_{\mu3}| = \left| -\frac{\sin \phi}{\sqrt{6}} + \frac{\cos \phi}{\sqrt{2}} \right| \end{aligned}$$

Adding the (1,3) or (1,2) off diagonal matrix:

$$M_{
u} = M_{
u}^{\mathrm{TBM}} + \left[egin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix} \quad \mathrm{or} \quad egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}
ight].$$

- Realized by A₄ symmetry (1', 1") and S₄ symmetry (2) and ...
 Y. S., M. Tanimoto and A. Watanabe, Prog. Theor. Phys. 126 (2011) 81.
- In this case, $\sin^2 \theta_{12} > \frac{1}{3}$, which is unfavored.

Introduction

We consider deviation from tri-bimaximal mixing

Case III: 2-3 mixing deviation from tri-bimaximal one.

$$\begin{aligned} U_{\text{PMNS}} &= V_{\text{tri-bi}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{pmatrix}, \\ |U_{e2}| &= \left| \frac{\cos \phi}{\sqrt{3}} \right| , \quad |U_{e3}| = \left| \frac{\sin \phi}{\sqrt{3}} \right| , \quad |U_{\mu3}| = \left| \frac{\cos \phi}{\sqrt{2}} + \frac{\sin \phi}{\sqrt{3}} \right| . \end{aligned}$$

• In this case, $\sin^2 \theta_{12} < \frac{1}{3}$.

We consider the framework of Split Seesaw:
 A. Kusenko, F. Takahashi and T. T. Yanagida, Phys. Lett. B 693 (2010) 144.

$$egin{aligned} M_{R1} \sim \mathcal{O}(\text{keV}) \ll M_{R2}, & M_{R3} \sim \mathcal{O}(10^{12} \text{ GeV}), \ Y_{1i}^D \ll Y_{2i}^D, & Y_{3i}^D. \end{aligned}$$

- M_{R1} is the sterile neutrino: Dark matter candidate.
- Realized in 5D theory compactified on S^1/Z_2 .

We can separate the neutrino mass matrix:

$$M_R^{3\times3} = \begin{pmatrix} M_{R1}^{1\times1} & 0\\ 0 & M_R^{2\times2} \end{pmatrix}, \quad M_D = \begin{pmatrix} Y_{3\times1}^D & Y_{3\times2}^D \end{pmatrix} v.$$

By using seesaw mechanism:

Flavor mixing

No effect on flavor mixing

■ We can consider "Minimal Texture".

The right-handed Majorana and Dirac neutrino mass matrices:

$$M_R^{2\times 2} = \begin{pmatrix} M_{R2} & 0\\ 0 & M_{R3} \end{pmatrix}, \quad M_D = Y_{3\times 2}^D v = \begin{pmatrix} a & d\\ b & e\\ c & f \end{pmatrix} v.$$

The condition of 2-3 mixing deviation (normal hierarchy):

$$2a - b - c = 0$$
, and $2d - e - f = 0$.

In this condition, left-handed Majorana neutrino mass matrix:

$$M_{\nu} = V_{\text{TBM}}^{T} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{3}{4} \left(\frac{(b+c)^{2}}{M_{R2}} + \frac{(e+f)^{2}}{M_{R3}} \right) & \frac{\sqrt{\frac{3}{2}}((b-c)(b+c)M_{R3}+(e-f)(e+f)M_{R2})}{2M_{R2}M_{R3}} \\ 0 & \frac{\sqrt{\frac{3}{2}}((b-c)(b+c)M_{R3}+(e-f)(e+f)M_{R2})}{2M_{R2}M_{R3}} & \frac{(b-c)^{2}M_{R3}+(e-f)^{2}M_{R2}}{2M_{R2}M_{R3}} \end{pmatrix} v^{2}V_{\text{TBM}}.$$

 In this case, Majorana mass can rescale, then the right-handed Majorana and Dirac neutrino mass matrices:

$$M_R^{2\times 2} = M_R \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_D = \begin{pmatrix} rac{b+c}{2} & rac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v.$$

• The general texture:

$$M_D = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v.$$

The general texture:

$$M_D = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v.$$

(i)
$$b + c = 0$$
 and $f = 0$:

$$M_D = \begin{pmatrix} 0 & \frac{e}{2} \\ b & e \\ -b & 0 \end{pmatrix} v \rightarrow \begin{pmatrix} 0 & \frac{e}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} v.$$

The general texture:

$$M_D = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v.$$

(i)
$$b + c = 0$$
 and $f = 0$:
 $\begin{pmatrix} 0 & \frac{e}{2} \end{pmatrix} \begin{pmatrix} 0 & \frac{e}{2} \end{pmatrix}$

$$M_D = \begin{pmatrix} \mathbf{c} & \mathbf{c} \\ b & \mathbf{e} \\ -b & \mathbf{0} \end{pmatrix} \mathbf{v} \rightarrow \begin{pmatrix} \frac{1}{\sqrt{2}} & \mathbf{c} \\ -\frac{1}{\sqrt{2}} & \mathbf{0} \end{pmatrix} \mathbf{v}.$$

(ii)
$$b + c = 0$$
 and $e = 0$:
$$M_D = \begin{pmatrix} 0 & \frac{f}{2} \\ b & 0 \\ -b & f \end{pmatrix} v \rightarrow \begin{pmatrix} 0 & \frac{f}{2} \\ \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} v.$$

$$M_D = egin{pmatrix} rac{b+c}{2} & rac{e+f}{2} \ b & e \ c & f \end{pmatrix} v.$$

• (i)
$$b + c = 0$$
 and $f = 0$:

$$M_D = \begin{pmatrix} \mathbf{0} & \frac{\mathbf{e}}{2} \\ b & \mathbf{e} \\ -b & \mathbf{0} \end{pmatrix} \mathbf{v} \rightarrow \begin{pmatrix} \mathbf{0} & \frac{\mathbf{e}}{2} \\ \frac{1}{\sqrt{2}} & \mathbf{e} \\ -\frac{1}{\sqrt{2}} & \mathbf{0} \end{pmatrix} \mathbf{v}$$

(ii)
$$b + c = 0$$
 and $e = 0$: (iii) $c = 0$ and $e = 0$:

$$M_{D} = \begin{pmatrix} 0 & \frac{f}{2} \\ b & 0 \\ -b & f \end{pmatrix} \mathbf{v} \to \begin{pmatrix} 0 & \frac{f}{2} \\ \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} \mathbf{v}. \quad M_{D} = \begin{pmatrix} \frac{b}{2} & \frac{f}{2} \\ b & 0 \\ 0 & f \end{pmatrix} \mathbf{v} \to \begin{pmatrix} \frac{1}{2} & \frac{f}{2} \\ 1 & 0 \\ 0 & f \end{pmatrix} \mathbf{v}.$$

The general texture:

• (i) b + c = 0 and f = 0:

$$M_D = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v. \qquad M_D = \begin{pmatrix} 0 & \frac{e}{2} \\ b & e \\ -b & 0 \end{pmatrix} v \rightarrow \begin{pmatrix} 0 & \frac{e}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} v$$

• (ii)
$$b + c = 0$$
 and $e = 0$:
• (iii) $c = 0$ and $e = 0$:
 $M_D = \begin{pmatrix} 0 & \frac{f}{2} \\ b & 0 \\ -b & f \end{pmatrix} v \rightarrow \begin{pmatrix} 0 & \frac{f}{2} \\ \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} v.$
 $M_D = \begin{pmatrix} \frac{b}{2} & \frac{f}{2} \\ b & 0 \\ 0 & f \end{pmatrix} v \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{f}{2} \\ 1 & 0 \\ 0 & f \end{pmatrix} v.$

 In the phenomenology, (i) is marginal but (ii) and (iii) are unfavored. In case (i), the left-handed Majorana neutrino mass matrix:

$$M_{
u} = rac{v^2}{M_R} V_{ ext{TBM}}^{ au} egin{pmatrix} 0 & 0 & 0 \ 0 & rac{3}{4} e^2 & -rac{1}{2} \sqrt{rac{3}{2}} e^2 \ 0 & -rac{1}{2} \sqrt{rac{3}{2}} e^2 & 1+rac{1}{2} e^2 \end{pmatrix} V_{ ext{TBM}}.$$

It's too large to be consistent with the experimental data if e ~ O(1). Therefore, we should take as e ≪ 1. The neutrino mass eigenvalues are

$$m_1=0,\quad \frac{m_2}{m_3}\simeq \frac{3}{4}e^2\equiv r.$$

• The additional 2-3 mixing angle is

$$an(2\phi)\simeq -\sqrt{rac{3}{2}}e^2.$$

The relevant mixing matrix elements:

$$|U_{e2}| \simeq rac{1}{\sqrt{3}} \sqrt{1 - rac{2}{3}r^2}, \quad |U_{e3}| \simeq \left| -rac{\sqrt{2}}{3}r \right|, \quad |U_{\mu 3}| \simeq \left| -rac{\sqrt{2}}{3}r + rac{1}{\sqrt{2}} \sqrt{1 - rac{2}{3}r^2} \right|$$

Toward minimal texture

Summary

Numerical results

In case (ii), the left-handed Majorana neutrino mass matrix:

$$M_{\nu} = rac{v^2}{M_R} V_{\mathsf{TBM}}^{\mathcal{T}} egin{pmatrix} 0 & 0 & 0 \ 0 & rac{3}{4}f^2 & rac{1}{2}\sqrt{rac{3}{2}}f^2 \ 0 & rac{1}{2}\sqrt{rac{3}{2}}f^2 & 1+rac{1}{2}f^2 \end{pmatrix} V_{\mathsf{TBM}}.$$

- It's too large to be consistent with the experimental data if $f \sim O(1)$, and thus we must take $f \ll 1$ as well as $e \ll 1$ in the previous case (i).
- Neutrino mass eigenvalues and additional mixing angle:

$$m_1 = 0, \quad rac{m_2}{m_3} \simeq rac{3}{4} f^2 \equiv r, \quad an(2\phi) \simeq \sqrt{rac{3}{2}} f^2.$$

The relevant mixing matrix elements:

$$|U_{e2}| \simeq \frac{1}{\sqrt{3}}\sqrt{1-\frac{2}{3}r^2}, \quad |U_{e3}| \simeq \frac{\sqrt{2}}{3}r, \quad |U_{\mu3}| \simeq \left|\frac{\sqrt{2}}{3}r + \frac{1}{\sqrt{2}}\sqrt{1-\frac{2}{3}r^2}\right|$$

Toward minimal texture

Summary

Numerical results

In this case, θ_{13} is unfavored.

In case (iii), the left-handed Majorana neutrino mass matrix:

$$M_{
u} = rac{v2}{M_R} V_{ ext{TBM}}^{ au} egin{pmatrix} 0 & 0 & 0 \ 0 & rac{3}{4}(f^2+1) & rac{1}{2}\sqrt{rac{3}{2}}(f^2-1) \ 0 & rac{1}{2}\sqrt{rac{3}{2}}(f^2-1) & rac{1}{2}(f^2+1) \end{pmatrix} V_{ ext{TBM}}.$$

Since the neutrino mass eigenvalues can be obtained by

$$m_1 = 0, \qquad \frac{m_2}{m_3} = \frac{5 + 5f^2 - \sqrt{25 - 46f^2 + 25f^4}}{5 + 5f^2 + \sqrt{25 - 46f^2 + 25f^4}} \equiv r,$$

the parameter f is evaluated as

$$f^2 \simeq \frac{25}{24}r$$
 or $\frac{24}{25r}$

• The additional mixing angle is too large.

$$\tan(2\phi) = \frac{2\sqrt{6}(1-f^2)}{1+f^2} \simeq -2\sqrt{6}$$
 or $2\sqrt{6}$.

The general texture:

$$M_D = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v.$$

The general texture:

$$M_D = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v. \qquad \Lambda$$

$$(1) b + c = 0:$$

$$\mathcal{M}_D = \begin{pmatrix} 0 & \frac{e+f}{2} \\ b & e \\ -b & f \end{pmatrix} v \rightarrow \begin{pmatrix} 0 & \frac{e+f}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} v.$$

The general texture:

(1) b + c = 0:

$$M_D = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v. \qquad M_D = \begin{pmatrix} 0 & \frac{e+f}{2} \\ b & e \\ -b & f \end{pmatrix} v \rightarrow \begin{pmatrix} 0 & \frac{e+f}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} v.$$

• (2)
$$c = 0$$
:

$$M_D = \begin{pmatrix} \frac{b}{2} & \frac{e+f}{2} \\ b & e \\ 0 & f \end{pmatrix} v \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{e+f}{2} \\ 1 & e \\ 0 & f \end{pmatrix} v.$$

The general texture:
(1) b + c = 0: $M_D = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v.$ $M_D = \begin{pmatrix} 0 & \frac{e+f}{2} \\ b & e \\ -b & f \end{pmatrix} v \rightarrow \begin{pmatrix} 0 & \frac{e+f}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} v.$ (2) c = 0:
(3) b = 0: $M_D = \begin{pmatrix} \frac{b}{2} & \frac{e+f}{2} \\ b & e \\ 0 & f \end{pmatrix} v \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{e+f}{2} \\ 1 & e \\ 0 & f \end{pmatrix} v.$ $M_D = \begin{pmatrix} \frac{c}{2} & \frac{e+f}{2} \\ 0 & e \\ c & f \end{pmatrix} v \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{e+f}{2} \\ 0 & e \\ 1 & f \end{pmatrix} v.$

• The general texture: $M_{D} = \begin{pmatrix} \frac{b+c}{2} & \frac{e+f}{2} \\ b & e \\ c & f \end{pmatrix} v.$ $M_{D} = \begin{pmatrix} 0 & \frac{e+f}{2} \\ b & e \\ -b & f \end{pmatrix} v \rightarrow \begin{pmatrix} 0 & \frac{e+f}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} v.$ • (2) c = 0: • (3) b = 0: $M_{D} = \begin{pmatrix} \frac{b}{2} & \frac{e+f}{2} \\ b & e \\ 0 & f \end{pmatrix} v \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{e+f}{2} \\ 1 & e \\ 0 & f \end{pmatrix} v.$ $M_{D} = \begin{pmatrix} \frac{c}{2} & \frac{e+f}{2} \\ 0 & e \\ c & f \end{pmatrix} v \rightarrow \begin{pmatrix} \frac{1}{2} & \frac{e+f}{2} \\ 0 & e \\ 1 & f \end{pmatrix} v.$

• We focus on (1) texture.

• (1)
$$b + c = 0$$
: $M_R^{2 \times 2} = M_R \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $M_D = \begin{pmatrix} 0 & \frac{e+t}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} v$.

• The left-handed Majorana neutrino mass matrix:

$$M_{\nu} = M_{D}(M_{R}^{2\times2})^{-1}M_{D}^{T} = \begin{pmatrix} \frac{1}{4}(e+f)^{2} & \frac{1}{2}e(e+f) & \frac{1}{2}(e+f)f\\ \frac{1}{2}e(e+f) & \frac{1}{2}+e^{2} & -\frac{1}{2}+ef\\ \frac{1}{2}(e+f)f & -\frac{1}{2}+ef & \frac{1}{2}+f^{2} \end{pmatrix} \frac{v^{2}}{M_{R}}.$$

Rotating tri-bimaximal mixing matrix V_{TBM}:

$$\begin{split} \mathcal{M}_{\nu} = & \mathcal{V}_{\text{TBM}}^{\mathcal{T}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{3}{4}(e+f)^2 & \frac{1}{2}\sqrt{\frac{3}{2}}(e-f)(e+f) \\ 0 & \frac{1}{2}\sqrt{\frac{3}{2}}(e-f)(e+f) & 1+\frac{1}{2}(e-f)^2 \end{pmatrix} \frac{v^2}{M_R} \, \mathcal{V}_{\text{TBM}}, \\ \mathcal{V}_{\text{TBM}} = & \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix}. \end{split}$$

The neutrino mass eigenvalues:

$$\frac{m_2}{m_3}\simeq \frac{3}{4}(e+f)^2\equiv r.$$

The lepton mixing:

$$U_{\rm PMNS} = V_{\rm TBM} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{pmatrix}, \quad \tan 2\phi \simeq \sqrt{\frac{3}{2}}(e-f)(e+f) \equiv \sqrt{6}\lambda.$$

Reparametrization including phases:

$$e=rac{2re^{2ilpha}-3\lambda e^{i\delta}}{2\sqrt{3re^{2ilpha}}}, \quad f=rac{2re^{2ilpha}+3\lambda e^{i\delta}}{2\sqrt{3re^{2ilpha}}}.$$

The relevant mixing matrix elements:

$$\begin{aligned} |U_{e2}| &= \left|\frac{\cos\phi}{\sqrt{3}}\right| \simeq \sqrt{\frac{1}{3} - \frac{\lambda^2}{2}}, \quad |U_{e3}| = \left|\frac{\sin\phi}{\sqrt{3}}\right| \simeq \frac{\lambda}{\sqrt{2}}, \\ |U_{\mu3}| &= \left|\frac{\cos\phi}{\sqrt{2}} + \frac{\sin\phi}{\sqrt{3}}\right| \simeq \left|\sqrt{\frac{1}{2} - \frac{3\lambda^2}{4}} + \frac{\lambda}{\sqrt{2}}\right|. \end{aligned}$$

Numerical analysis

We take the parameters:

 $\Delta m_{\rm atm}^2 = (2.55^{+0.19}_{-0.24}) \times 10^{-3} \text{ eV}^2, \quad \Delta m_{\rm sol}^2 = (7.62^{+0.58}_{-0.50}) \times 10^{-5} \text{ eV}^2,$ $\sin^2 \theta_{12} = 0.320 \pm 0.05, \quad \sin^2 \theta_{23} = 0.427 \ (0.613) \ 0.36 - 0.68, \quad \sin^2 \theta_{13} = 0.0246^{+0.0084}_{-0.0076}$

$\nu 0\beta\beta$ and CP violation

■ ν0ββ:

$$|m_{ee}| = \sum_{i}^{3} \left| m_{i} U_{ei}^{2} \right|.$$

CP violation:

$$J_{CP} = \operatorname{Im} \left[U_{\mu 3} U_{\tau 3}^* U_{\mu 2}^* U_{\tau 2} \right].$$

May 13, 2013

Inverted hierarchy

The condition of 2-3 deviation:

$$a+b+c=0, \quad b=c, \quad \text{and} \quad 2d-e-f=0.$$

The left-handed Majorana neutrino mass matrix:

$$M_{
u} = V_{\text{TBM}}^{T} egin{pmatrix} 6b^2 & 0 & 0 \ 0 & rac{3}{4}(e+f)^2 & rac{1}{2}\sqrt{rac{3}{2}}(e-f)(e+f) \ 0 & rac{1}{2}\sqrt{rac{3}{2}}(e-f)(e+f) & rac{1}{2}(e-f)^2 \end{pmatrix} rac{v^2}{M_R} V_{\text{TBM}}.$$

The right-handed Majorana and Dirac neutrino mass matrices:

$$M_R^{2\times 2} = M_R \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_D = \begin{pmatrix} -2b & \frac{e+f}{2} \\ b & e \\ b & f \end{pmatrix} v \quad \rightarrow \quad \begin{pmatrix} -2 & \frac{e+f}{2} \\ 1 & e \\ 1 & f \end{pmatrix} v.$$

Neutrino mass eigenvalues:

$$m_3 = 0, \quad \frac{m_2}{m_1} = \frac{1}{24} \left(5e^2 + 2ef + 5f^2 \right) \equiv r'.$$

• The additional 2-3 mixing angle ϕ :

$$\tan 2\phi = \sqrt{\frac{2}{3}} \left(\frac{-e+f}{e+f}\right).$$

$\nu 0\beta\beta$ and CP violation

■ ν0ββ:

$$|m_{ee}| = \sum_{i}^{3} \left| m_{i} U_{ei}^{2} \right|.$$

CP violation:

$$J_{CP} = \text{Im} \left[U_{\mu 3} U_{\tau 3}^* U_{\mu 2}^* U_{\tau 2} \right].$$

Introduction

One zero texture with the Cabibbo angle

• The one zero texture (normal hierarchy) (1) b + c = 0:

$$\begin{split} \mathcal{M}_{R}^{2\times2} &= \mathcal{M}_{R} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathcal{M}_{D} = \begin{pmatrix} 0 & \frac{e+f}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} \mathbf{v}, \\ e &= \frac{2re^{2i\alpha} - 3\lambda e^{i\delta}}{2\sqrt{3re^{2i\alpha}}}, \quad f = \frac{2re^{2i\alpha} + 3\lambda e^{i\delta}}{2\sqrt{3re^{2i\alpha}}}. \end{split}$$

• We take λ the Cabibbo angle ($\lambda = 0.225$).

$\nu 0\beta\beta$ and CP violation

■ ν0ββ:

$$|m_{ee}| = \sum_{i}^{3} \left| m_{i} U_{ei}^{2} \right|.$$

CP violation:

$$J_{CP} = \text{Im} \left[U_{\mu 3} U_{\tau 3}^* U_{\mu 2}^* U_{\tau 2} \right].$$

The Cabibbo angle and neutrino mass ratio

• The one zero texture (normal hierarchy) (1) b + c = 0:

$$M_R^{2 \times 2} = M_R \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_D = \begin{pmatrix} 0 & \frac{e+f}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix} v,$$

$$e = rac{2re^{2ilpha} - 3\lambda e^{i\delta}}{2\sqrt{3re^{2ilpha}}}, \quad f = rac{2re^{2ilpha} + 3\lambda e^{i\delta}}{2\sqrt{3re^{2ilpha}}}$$

• $\lambda/\sqrt{2} = r, \ \delta = 2\alpha$: $e = \frac{(2 - 3\sqrt{2})\sqrt{r}e^{i\alpha}}{2\sqrt{3}}, \ f = \frac{(2 + 3\sqrt{2})\sqrt{r}e^{i\alpha}}{2\sqrt{3}}.$

Numerical result

Neutrino Texture:

$$M_{R}^{2\times 2} = M_{R} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_{D} = \begin{pmatrix} 0 & \frac{1}{\sqrt{3}}\sqrt{r}e^{i\alpha} \\ \frac{1}{\sqrt{2}} & \frac{2-3\sqrt{2}}{2\sqrt{3}}\sqrt{r}e^{i\alpha} \\ -\frac{1}{\sqrt{2}} & \frac{2+3\sqrt{2}}{2\sqrt{3}}\sqrt{r}e^{i\alpha} \end{pmatrix} v.$$

$\nu 0\beta\beta$ and CP violation

■ ν0ββ:

$$|m_{ee}| = \sum_{i}^{3} \left| m_{i} U_{ei}^{2} \right|.$$

CP violation:

$$J_{CP} = \text{Im} \left[U_{\mu 3} U_{\tau 3}^* U_{\mu 2}^* U_{\tau 2} \right].$$

4. Summary

Conclusion

- The large θ_{13} is given impact for us.
- We propose minimal texture which makes the connection between masses and mixing angles.

$$r = \sqrt{rac{\Delta m_{
m sol}^2}{\Delta m_{
m atm}^2}} = rac{\lambda}{\sqrt{2}} = \sin heta_{13}.$$

These textures are motivated for model building.

We have presented the texture realized large θ_{13} !!

$$M_R^{2 \times 2} = M_R \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_D = \begin{pmatrix} 0 & \frac{e+f}{2} \\ \frac{1}{\sqrt{2}} & e \\ -\frac{1}{\sqrt{2}} & f \end{pmatrix}$$

Future works

- We want to build the concrete model not only lepton sector but also quark sector.
 - (e.g. non-Abelian discrete symmetry A_4 , S_4 , $\Delta(54)$...)
- Please discuss with me the flavor physics.
 (e.g. lepton flavor, CP violation in B mesons ...)

Danke Schön!!