Patterns of Remnant Discrete Symmetries

Roland Schieren

in collaboration with

Rolf Kappl, Patrick Vaudrevange, Michael Ratz and Björn Petersen

based on JHEP 0908:111 (2009)

Heidelberg, 28. Juni 2010

2 Anomalies

3 Applications

Obtaining abelian discrete symmetries Redundancies Generalization

General considerations

• A general finite, abelian group is always of the form

(fundamental theorem of finite abelian groups)

 $\mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_N}$

Obtaining abelian discrete symmetries Redundancies Generalization

General considerations

• A general finite, abelian group is always of the form (fundamental theorem of finite abelian groups)

$$\mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_N}$$

- Main use of abelian, discrete symmetries: Forbid couplings
 - Example: matter parity to suppress proton decay

Obtaining abelian discrete symmetries Redundancies Generalization

General considerations

• A general finite, abelian group is always of the form (fundamental theorem of finite abelian groups)

$$\mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_N}$$

- Main use of abelian, discrete symmetries: Forbid couplings
 - Example: matter parity to suppress proton decay

• abelian, discrete groups have only one-dimensional irreducible representations

 \curvearrowright cannot explain mixing angles, etc.

Obtaining abelian discrete symmetries Redundancies Generalization

Origin of abelian discrete symmetries

Arguments against imposing discrete symmetries:

- their breaking leads to domain walls \curvearrowright solutions:
 - symmetry is not exact
 - break before inflation
 - embedd in gauge symmetry
 - . . .

Zeldovich et.al (1974)

Obtaining abelian discrete symmetries Redundancies Generalization

Origin of abelian discrete symmetries

Arguments against imposing discrete symmetries:

• their breaking leads to domain walls \curvearrowright solutions:

Zeldovich et.al (1974)

- symmetry is not exact
- break before inflation
- embedd in gauge symmetry
- . . .
- quantum gravity is expected to violate global symmetries (black hole only carry gauged charges)
 L. Krauss and F. Wilczek (1989)

Obtaining abelian discrete symmetries Redundancies Generalization

Origin of abelian discrete symmetries

Arguments against imposing discrete symmetries:

• their breaking leads to domain walls \curvearrowright solutions:

Zeldovich et.al (1974)

- symmetry is not exact
- break before inflation
- embedd in gauge symmetry
- . . .
- quantum gravity is expected to violate global symmetries (black hole only carry gauged charges)
 L. Krauss and F. Wilczek (1989)

• in string theory all symmetries must be gauged

Polchinski

Obtaining abelian discrete symmetries Redundancies Generalization

Review: $U(1) \rightarrow \mathbb{Z}_N$

Obtaining abelian discrete symmetries Redundancies Generalization

Review: $U(1) \rightarrow \mathbb{Z}_N$

Obtaining abelian discrete symmetries Redundancies Generalization

Review:
$$\mathrm{U}(1) o \mathbb{Z}_N$$

Calculation

usual ansatz:

$$e^{i \mathbf{3} \alpha(x)} \phi = c$$

 $\Rightarrow \quad \alpha = 2\pi \frac{n}{3}$

2 transformation of ψ :

$$\psi \to e^{2\pi i \frac{n}{3}} \psi$$

Visualization φ defines a lattice ψ φ

Obtaining abelian discrete symmetries Redundancies Generalization

Review:
$$\mathrm{U}(1) o \mathbb{Z}_N$$

Calculation

usual ansatz:

$$e^{i \mathbf{3} \alpha(x)} \phi = \phi$$
$$\Rightarrow \quad \alpha = 2\pi \frac{n}{3}$$

Q transformation of ψ :

$$\psi \to e^{2\pi i \frac{n}{3}} \psi$$

Visualization $\bullet \phi$ defines a lattice

Unbroken symmetry: $\mathbb{Z}_{\mathbf{3}}$

Obtaining abelian discrete symmetries Redundancies Generalization

The general case: Breaking $U(1)^N$

• Notation: VEV fields $\phi^{(i)}$ with U(1)_j charge $q_j(\phi^{(i)})$ and other fields $\psi^{(k)}$

Obtaining abelian discrete symmetries Redundancies Generalization

- Notation: VEV fields $\phi^{(i)}$ with U(1)_j charge $q_j(\phi^{(i)})$ and other fields $\psi^{(k)}$
- define a charge matrix ${m Q}_{ij}=q_j(\phi^{(i)})$ and similarly ${m Q}_\psi$

Obtaining abelian discrete symmetries Redundancies Generalization

- Notation: VEV fields $\phi^{(i)}$ with U(1)_j charge $q_j(\phi^{(i)})$ and other fields $\psi^{(k)}$
- define a charge matrix ${\cal Q}_{ij}=q_j(\phi^{(i)})$ and similarly ${\cal Q}_\psi$
- ansatz: exp $\left(i \sum_{j} \mathbf{Q}_{ij} \alpha_{j}\right) \phi^{(i)} = \phi^{(i)}$

Obtaining abelian discrete symmetries Redundancies Generalization

- Notation: VEV fields $\phi^{(i)}$ with U(1)_j charge $q_j(\phi^{(i)})$ and other fields $\psi^{(k)}$
- define a charge matrix ${m Q}_{ij}={m q}_j(\phi^{(i)})$ and similarly ${m Q}_\psi$
- ansatz: $\exp\left(i\sum_{j} Q_{ij} \alpha_{j}\right) \phi^{(i)} = \phi^{(i)} \quad \Leftrightarrow \quad \boxed{Q \alpha = 2\pi n}$

Obtaining abelian discrete symmetries Redundancies Generalization

- Notation: VEV fields $\phi^{(i)}$ with U(1)_j charge $q_j(\phi^{(i)})$ and other fields $\psi^{(k)}$
- define a charge matrix ${m Q}_{ij}=q_j(\phi^{(i)})$ and similarly ${m Q}_\psi$
- ansatz: $\exp\left(i \sum_{j} Q_{ij} \alpha_{j}\right) \phi^{(i)} = \phi^{(i)} \quad \Leftrightarrow \quad \boxed{Q \alpha = 2\pi n}$
- Diagonalize Q with unimodular matrices (det = ± 1) (Smith normal form)

$$A \ Q \ B = \operatorname{diag}'(d_1, \ldots, d_N)$$

Obtaining abelian discrete symmetries Redundancies Generalization

The general case: Breaking $U(1)^N$

- Notation: VEV fields $\phi^{(i)}$ with U(1)_j charge $q_j(\phi^{(i)})$ and other fields $\psi^{(k)}$
- ullet define a charge matrix $oldsymbol{Q}_{ij}=oldsymbol{q}_j(\phi^{(i)})$ and similarly $oldsymbol{Q}_\psi$
- ansatz: $\exp\left(i \sum_{j} Q_{ij} \alpha_{j}\right) \phi^{(i)} = \phi^{(i)} \quad \Leftrightarrow \quad \boxed{Q \alpha = 2\pi n}$
- Diagonalize Q with unimodular matrices (det = ± 1) (Smith normal form)

$$A \ Q \ B = \operatorname{diag}'(d_1, \ldots, d_N)$$

Unbroken symmetry: $\mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_N}$

Obtaining abelian discrete symmetries Redundancies Generalization

The general case: Breaking $U(1)^N$

- Notation: VEV fields $\phi^{(i)}$ with U(1)_j charge $q_j(\phi^{(i)})$ and other fields $\psi^{(k)}$
- define a charge matrix ${m Q}_{ij}=q_j(\phi^{(i)})$ and similarly Q_ψ
- ansatz: $\exp\left(i \sum_{j} Q_{ij} \alpha_{j}\right) \phi^{(i)} = \phi^{(i)} \quad \Leftrightarrow \quad \boxed{Q \alpha = 2\pi n}$
- Diagonalize Q with unimodular matrices (det = ± 1) (Smith normal form)

$$A \ Q \ B = \operatorname{diag}'(d_1, \ldots, d_N)$$

Unbroken symmetry: $\mathbb{Z}_{d_1} imes \ldots imes \mathbb{Z}_{d_N}$

• charges of the
$$\psi^{(i)}$$
: $Q'_\psi = Q_\psi \, B$

Obtaining abelian discrete symmetries Redundancies Generalization

Ţ	J (1) 1	U(1) ₂	Ţ	$J(1)_{1}$	$\mathrm{U}(1)_2$
$\phi^{(1)}$	8	-2	$\psi^{(1)}$	1	3
$\phi^{(2)}$	4	2	$\psi^{(2)}$	1	5
$\phi^{(3)}$	2	4			

Obtaining abelian discrete symmetries Redundancies Generalization

Ţ	$\mathrm{U}(1)_1\mathrm{U}(1)_2$			$\mathrm{U}(1)_{1}\mathrm{U}(1)$		
$\phi^{(1)}$	8	-2		$\psi^{(1)}$	1	3
$\phi^{(2)}$	4	2		$\psi^{(2)}$	1	5
$\phi^{(3)}$	2	4				

• charge matrix:
$$Q = \begin{pmatrix} 8 & -2 \\ 4 & 2 \\ 2 & 4 \end{pmatrix}$$

Obtaining abelian discrete symmetries Redundancies Generalization

Ţ	$\mathrm{U}(1)_1\mathrm{U}(1)_2$			$\mathrm{U}(1)_1\mathrm{U}(1)$		
$\phi^{(1)}$	8	-2		$\psi^{(1)}$	1	3
$\phi^{(2)}$	4	2		$\psi^{(2)}$	1	5
$\phi^{(3)}$	2	4				

• charge matrix:
$$Q = \begin{pmatrix} 8 & -2 \\ 4 & 2 \\ 2 & 4 \end{pmatrix} = A^{-1} \begin{pmatrix} 2 & 0 \\ 0 & 6 \\ 0 & 0 \end{pmatrix} B^{-1}$$

Obtaining abelian discrete symmetries Redundancies Generalization

Ţ	U (1) 1	$\mathrm{U}(1)_2$	τ	J (1) 1	$\mathrm{U}(1)_2$
$\phi^{(1)}$	8	-2	$\psi^{(1)}$	1	3
$\phi^{(2)}$	4	2	$\psi^{(2)}$	1	5
$\phi^{(3)}$	2	4			

• charge matrix:
$$Q = \begin{pmatrix} 8 & -2 \\ 4 & 2 \\ 2 & 4 \end{pmatrix} = A^{-1} \begin{pmatrix} 2 & 0 \\ 0 & 6 \\ 0 & b \end{pmatrix} B^{-1}$$

Unbroken symmetry: $\mathbb{Z}_2 \times \mathbb{Z}_6$

Obtaining abelian discrete symmetries Redundancies Generalization

Ţ	U (1) 1	$\mathrm{U}(1)_2$	Ţ	$U(1)_1$	U(1) ₂
$\phi^{(1)}$	8	-2	$\psi^{(1)}$	1	3
$\phi^{(2)}$	4	2	$\psi^{(2)}$	1	5
$\phi^{(3)}$	2	4			

• charge matrix:
$$Q = \begin{pmatrix} 8 & -2 \\ 4 & 2 \\ 2 & 4 \end{pmatrix} = A^{-1} \begin{pmatrix} 2 & 0 \\ 0 & 6 \\ 0 & 0 \end{pmatrix} B^{-1}$$
Unbroken symmetry: $\mathbb{Z}_2 \times \mathbb{Z}_6$

• charges of the
$$\psi^{(i)}$$
: $\begin{pmatrix} 1 & 3 \\ 1 & 5 \end{pmatrix} B = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$

Obtaining abelian discrete symmetries Redundancies Generalization

A two-dimensional example: Visualization

$\phi^{(1)}$ 8 -2 $\psi^{(1)}$ 1 $\phi^{(2)}$ 4 2 $\psi^{(2)}$ 1
$\phi^{(2)}$ 4 2 $y^{(2)}$ 1
φ φ φ φ
$\phi^{(3)}$ 2 4

Obtaining abelian discrete symmetries Redundancies Generalization

A two-dimensional example: Visualization

Obtaining abelian discrete symmetries Redundancies Generalization

Redundancies

A trivial example

• \mathbb{Z}_6 and a field ψ having charge 4:

$$\psi \to e^{2\pi i 4 \frac{n}{6}} \psi = e^{2\pi i 2 \frac{n}{3}} \psi$$

- One cannot perform all symmetry transformations. n'=0,1,2
- $\bullet\,$ Conclusion: Just \mathbb{Z}_3 and ψ has charge 2

Obtaining abelian discrete symmetries Redundancies Generalization

Redundancies

A trivial example

• \mathbb{Z}_6 and a field ψ having charge 4:

$$\psi \to e^{2\pi i 4 \frac{n}{6}} \psi = e^{2\pi i 2 \frac{n}{3}} \psi$$

- One cannot perform all symmetry transformations. n'=0,1,2
- $\bullet\,$ Conclusion: Just \mathbb{Z}_3 and ψ has charge 2

For a general group $\mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_N}$ there are two cases:

- **Q** In one factor, d_i and all charges have a greatest common dividor > 1
- Two factors are equal

Obtaining abelian discrete symmetries Redundancies Generalization

Redundancies

A trivial example

• \mathbb{Z}_6 and a field ψ having charge 4:

$$\psi \to e^{2\pi i 4 \frac{n}{6}} \psi = e^{2\pi i 2 \frac{n}{3}} \psi$$

- One cannot perform all symmetry transformations. n'=0,1,2
- $\bullet\,$ Conclusion: Just \mathbb{Z}_3 and ψ has charge 2

For a general group $\mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_N}$ there are two cases:

- **Q** In one factor, d_i and all charges have a greatest common dividor > 1
- Two factors are equal

Complication

for a general group there a very many equivalent charge assignments (corresponds to the automorphisms of the group) e.g. $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4$ has 1536 equivalent charge assignments

Obtaining abelian discrete symmetries Redundancies Generalization

Two Examples

Case 1											
		\mathbb{Z}_4	\mathbb{Z}_8		\mathbb{Z}_4	\mathbb{Z}_8	-		\mathbb{Z}_2	\mathbb{Z}_8	
	$\psi^{(1)}$	2	4	$\psi^{(1)}$	2	4	ĩ	ψ ⁽¹⁾	1	4	
	$\psi^{(2)}$	3	3	$\psi^{(2)}$	2	3	1	ý(2)	1	3	

All three tables show physically equivalent symmetry groups

Obtaining abelian discrete symmetries Redundancies Generalization

Two Examples

Case 1						
		\mathbb{Z}_4	\mathbb{Z}_8	\mathbb{Z}_4 Z	Z ₈	$\mathbb{Z}_2 \mathbb{Z}_8$
	$\psi^{(1)}$	2	4	$\psi^{(1)}$ 2	4	$\psi^{(1)}$ 1 4
	$\psi^{(2)}$	3	3	$\psi^{(2)}$ 2	3	$\psi^{(2)}$ 1 3

All three tables show physically equivalent symmetry groups

Case 2

Obtaining abelian discrete symmetries Redundancies Generalization

Generalization

So far: $U(1)^N \rightarrow \mathbb{Z}_{d_1} \times \ldots \times \mathbb{Z}_{d_N}$

- Mixed cases: $\mathbb{Z}_d \times U(1) \rightarrow \mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2}$ Write as $U(1) \times U(1)$ and introduce dummy field ϕ with charge (d, 0)
- R-symmetry breaking: Introduce dummy field Ω which has the same charge as the superpotential

Discrete Anomalies

\mathbb{Z}_N anomalies

\mathbb{Z}_{N} anomalies

The setup

- $\bullet\,$ gauge theory with simple gauge group ${\it G}_{\rm gauge}$
- a \mathbb{Z}_N symmetry
- fields $\psi^{(i)}$ in irreducible representation $\mathbf{r}^{(i)}$ of $\mathcal{G}_{ ext{gauge}}$; \mathbb{Z}_N charge $q^{(i)}$

 \mathbb{Z}_N anomalies

\mathbb{Z}_{N} anomalies

The setup

- \bullet gauge theory with simple gauge group ${\it G}_{\rm gauge}$
- a \mathbb{Z}_N symmetry
- fields $\psi^{(i)}$ in irreducible representation $\mathbf{r}^{(i)}$ of G_{gauge} ; \mathbb{Z}_N charge $q^{(i)}$

Under a \mathbb{Z}_N transformation

$$\psi^{(i)} \to \exp\left(\frac{2\pi i}{N}q^{(i)}\right)\psi^{(i)}$$

 $\mathcal{D}\Psi\mathcal{D}\bar{\Psi} \to \exp\left(\frac{2\pi i}{N}n_{\text{gauge}}\sum_{i}q^{(i)}\,2\ell(\mathbf{r}^{(i)})\right)\mathcal{D}\Psi\mathcal{D}\bar{\Psi}$

T. Araki et. al. (2008)

 \mathbb{Z}_N anomalies

\mathbb{Z}_{N} anomalies

The setup

- \bullet gauge theory with simple gauge group ${\it G}_{\rm gauge}$
- a \mathbb{Z}_N symmetry
- fields $\psi^{(i)}$ in irreducible representation $\mathbf{r}^{(i)}$ of G_{gauge} ; \mathbb{Z}_N charge $q^{(i)}$

Under a \mathbb{Z}_N transformation

$$\psi^{(i)} \to \exp\left(\frac{2\pi i}{N}q^{(i)}\right)\psi^{(i)}$$

$$\mathcal{D}\Psi\mathcal{D}\bar{\Psi} \to \exp\left(\frac{2\pi i}{N}n_{gauge}\sum_{i}q^{(i)}\,2\ell(\mathbf{r}^{(i)})\right)\mathcal{D}\Psi\mathcal{D}\bar{\Psi}$$
T. Araki et. al. (2008)
$$n_{gauge} \in \mathbb{Z}$$
Note: $n_{gauge} = 0$ for $G_{gauge} = U(1)$

 \mathbb{Z}_N anomalies

\mathbb{Z}_{N} anomalies

The setup

- \bullet gauge theory with simple gauge group ${\it G}_{\rm gauge}$
- a \mathbb{Z}_N symmetry
- fields $\psi^{(i)}$ in irreducible representation $\mathbf{r}^{(i)}$ of G_{gauge} ; \mathbb{Z}_N charge $q^{(i)}$

Under a \mathbb{Z}_N transformation

$$\begin{split} \psi^{(i)} &\to \exp\left(\frac{2\pi i}{N}q^{(i)}\right)\psi^{(i)}\\ \mathcal{D}\Psi\mathcal{D}\bar{\Psi} &\to \exp\left(\frac{2\pi i}{N}n_{\text{gauge}}\sum_{i}q^{(i)}2\ell(\mathbf{r}^{(i)})\right)\mathcal{D}\Psi\mathcal{D}\bar{\Psi}\\ &\xrightarrow{\text{T. Araki et. al. (2008)}}\\ &\text{Dynkin index}\\ \text{factor 2 comes from normalization }\ell(\mathbf{M}) = \frac{1}{2} \text{ for } \text{SU}(M) \end{split}$$

 \mathbb{Z}_N anomalies

\mathbb{Z}_{N} anomalies

The setup

- \bullet gauge theory with simple gauge group ${\it G}_{\rm gauge}$
- a \mathbb{Z}_N symmetry
- fields $\psi^{(i)}$ in irreducible representation $\mathbf{r}^{(i)}$ of G_{gauge} ; \mathbb{Z}_N charge $q^{(i)}$

Under a \mathbb{Z}_N transformation

$$\psi^{(i)} \to \exp\left(\frac{2\pi i}{N}q^{(i)}\right)\psi^{(i)}$$

 $\mathcal{D}\Psi\mathcal{D}\bar{\Psi} \to \exp\left(\frac{2\pi i}{N}n_{\text{gauge}}\sum_{i}q^{(i)}\,2\ell(\mathbf{r}^{(i)})\right)\mathcal{D}\Psi\mathcal{D}\bar{\Psi}$

T. Araki et. al. (2008)

Anomaly condition: $\sum_{i} q^{(i)} \ell(\mathbf{r}^{(i)}) = 0 \mod \frac{N}{2}$

 \mathbb{Z}_N anomalies

Consequences of discrete anomalies

instantons induce an effective term in the Lagrangian

$$\mathscr{L} \supset e^{-\frac{8\pi^2}{g^2}k} \prod_{i=1} \left(\psi^{(i)}\right)^{2\ell(\mathbf{r}^{(i)})}$$

t'Hooft (1976)

 \mathbb{Z}_N anomalies

Consequences of discrete anomalies

instantons induce an effective term in the Lagrangian

$$\mathscr{L} \supset e^{-rac{8\pi^2}{g^2}k} \prod_{i=1} \left(\psi^{(i)}
ight)^{2\ell(\mathbf{r}^{(i)})}$$

t'Hooft (1976)

• This term breaks any \mathbb{Z}_N symmetry unless

$$\sum_i q^{(i)} \ell(\mathbf{r}^{(i)}) = 0 \mod \frac{N}{2}$$

 \mathbb{Z}_N anomalies

Consequences of discrete anomalies

instantons induce an effective term in the Lagrangian

$$\mathscr{L} \supset e^{-rac{8\pi^2}{g^2}k} \prod_{i=1} \left(\psi^{(i)}\right)^{2\ell(\mathbf{r}^{(i)})}$$

t'Hooft (1976)

• This term breaks any
$$\mathbb{Z}_N$$
 symmetry unless

$$\sum_{i} q^{(i)} \ell(\mathbf{r}^{(i)}) = 0 \mod \frac{N}{2}$$

example

$$\begin{array}{c|cc}
\psi^{(1)} & \psi^{(2)} \\
\hline
SU(M) & \mathbf{M} & \overline{\mathbf{M}} \\
\mathbb{Z}_6 & 3 & 1
\end{array}$$

Z_N anomalies

Consequences of discrete anomalies

instantons induce an effective term in the Lagrangian

$$\mathscr{L} \supset e^{-rac{8\pi^2}{g^2}k} \prod_{i=1} \left(\psi^{(i)}\right)^{2\ell(\mathbf{r}^{(i)})}$$

t'Hooft (1976)

• This term breaks any \mathbb{Z}_N symmetry unless

$$\sum_{i} q^{(i)} \ell(\mathbf{r}^{(i)}) = 0 \mod \frac{N}{2}$$

example $_{\eta/,(1)}$ $\psi^{(1)} \psi^{(2)}$ _{1/2}(2) anomaly SU(M)SU(M)М Μ М M \mathbb{Z}_2 \mathbb{Z}_6 3 1 1 1 $(1)_{1/2}(2)$

An SO(10) SUSY GUT example

An SO(10) SUSY GUT example A string theory example

The model

R. Mohapatra, M. Ratz (2007)

	ψ_{m}	Η	H'	ψ_{H}	$\overline{\psi}_{H}$	A	S
SO(10)	16	10	10	16	16	45	54
\mathbb{Z}_6	1	4	2	4	2	0	0

- ψ_m , H and H' are SM matter and Higgses
- ψ_H , $\overline{\psi}_H$, A and S break SO(10) $\rightarrow G_{SM}$

An SO(10) SUSY GUT example A string theory example

The model

R. Mohapatra, M. Ratz (2007)

	ψ_{m}	Η	H'	ψ_{H}	$\overline{\psi}_{H}$	A	S
SO(10)	16	10	10	16	16	45	54
\mathbb{Z}_6	1	4	2	4	2	0	0

- $\psi_{\it m}$, ${\it H}$ and ${\it H'}$ are SM matter and Higgses
- ψ_H , $\overline{\psi}_H$, A and S break SO(10) $\rightarrow G_{SM}$

.

 $\bullet\,$ non-anomalous \mathbb{Z}_6 suppresses proton decay

An SO(10) SUSY GUT example A string theory example

The model

R. Mohapatra, M. Ratz (2007)

	ψ_{m}	Η	H'	ψ_{H}	$\overline{\psi}_{H}$	A	S
SO(10)	16	10	10	16	16	45	54
\mathbb{Z}_6	1	4	2	4	2	0	0

- $\psi_{\it m}$, ${\it H}$ and ${\it H'}$ are SM matter and Higgses
- ψ_H , $\overline{\psi}_H$, A and S break SO(10) $\rightarrow G_{SM}$
- $\bullet\,$ non-anomalous \mathbb{Z}_6 suppresses proton decay
- There is an additional $U(1)_X$

$$\begin{array}{l} \mathrm{SO(10)} \rightarrow \mathrm{SU(5)} \times \mathrm{U(1)}_X \\ \mathbf{16} \rightarrow \mathbf{10}_{-1} + \mathbf{\overline{5}}_3 + \mathbf{1}_{-5} \end{array}$$

• Singlet obtains a VEV

 $\mathrm{U}(1)_X\times\mathbb{Z}_6$ broken by fields with charge $(\pm5,\pm2)$

An SO(10) SUSY GUT example A string theory example

The model II

 $\mathrm{U}(1)_X\times \mathbb{Z}_6$ broken by fields with charge $(\pm 5,\pm 2)$

• Naive expectation: $\mathbb{Z}_5 \times \mathbb{Z}_2$

An SO(10) SUSY GUT example A string theory example

The model II

 $\mathrm{U}(1)_X\times \mathbb{Z}_6$ broken by fields with charge $(\pm 5,\pm 2)$

• Naive expectation: $\mathbb{Z}_5 \times \mathbb{Z}_2$

	Q	Ū	Đ	L	Ē	Η _U	H_D
\mathbb{Z}_{30}	23	23	1	1	23	14	6
$\mathbb{Z}_5\times\mathbb{Z}_6$	(3,1)	(3,1)	(1,5)	(1,5)	(3,1)	(4,4)	(1,0)

- This field content is anomalous!
- \bullet Either more light states are present or the \mathbb{Z}_6 is not exact.

A string theory example

An SO(10) SUSY GUT example A string theory example

The model

M. Blaszczyk, S. Groot Nibbelink, M. Ratz, F. Ruehle, M. Trapletti, P. Vaudrevange (2009)

- Z₂ × Z₂ orbifold compactification of the heterotic string
- massless spectrum: 3 × generations + vector-like
- (local) SU(5) GUT structure
- 4D gauge group

SU(5) SU(6) SU(6) SU(5) SU(5) SU(5)

 $\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \times \left[\mathrm{SU}(3) \times \mathrm{SU}(2)^2 \times \mathrm{U}(1)^8\right]$

• discrete *R*-symmetries $\mathbb{Z}_2^R \times \mathbb{Z}_2^R \times \mathbb{Z}_2^R$

An SO(10) SUSY GUT example A string theory example

The spectrum

massless spectrum:

- some SM singlets get VEV
- many choices (string landscape)

An SO(10) SUSY GUT example A string theory example

Search for a good vacuum

We look for vacua with the following properties:

- all exotics decouple
- non-trivial Yukawa couplings
- matter parity

Our vacuum has the following properties:

- 21 fields $\widetilde{\phi}$ which get a VEV
- the $\widetilde{\phi}$ break $\mathrm{U}(1)^8 \times \mathbb{Z}_2^R \times \mathbb{Z}_2^R \times \mathbb{Z}_2^R \longrightarrow \mathbb{Z}_2^{\mathcal{M}} \times \mathbb{Z}_4^R$

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_2^{\mathcal{M}} \times \mathbb{Z}_4^{\mathcal{R}}$ quantum numbers & implications

quarks and leptons							Higgs and exotics							
q_1	1	2		\overline{u}_1	1	2	\bar{h}_1	0	2		h_1	0	2	
q_2	1	2		\overline{u}_2	1	2	\overline{h}_2	0	0		h_2	0	2	
q 3	1	0		\overline{u}_3	1	0	\overline{h}_3	0	0		h ₃	0	2	
\overline{d}_1	1	2		ℓ_1	1	2	$\overline{\delta}_1$	0	2		δ_1	0	2	
\overline{d}_2	1	2		ℓ_2	1	2	$\overline{\delta}_2$	0	0		δ_2	0	0	
\bar{d}_3	1	0		ℓ_3	1	0	$\overline{\delta}_3$	0	2		δ_3	0	0	
\overline{d}_4	1	0		ℓ_4	1	0	$\overline{\delta}_4$	0	2		δ_4	0	0	
d_1	1	2		$\overline{\ell}_1$	1	2								
\bar{e}_1	1	2												
ē ₂	1	2												
ē3	1	0												

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_2^{\mathcal{M}} \times \mathbb{Z}_4^{\mathcal{R}}$ quantum numbers & implications

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_2^{\mathcal{M}} imes \mathbb{Z}_4^R$ quantum numbers & implications

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_2^{\mathcal{M}} \times \mathbb{Z}_4^{\mathcal{R}}$ quantum numbers & implications

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_2^{\mathcal{M}} \times \mathbb{Z}_4^{\mathcal{R}}$ quantum numbers & implications

quarks and leptons							Higgs and exotics							
q_1	1	2		\bar{u}_1	1	2	\bar{h}_1	0	2		h_1	0	2	
q ₂	1	2		\overline{u}_2	1	2	\overline{h}_2	0	0		h_2	0	2	
q 3	1	0		\bar{u}_3	1	0	\overline{h}_3	0	0		h ₃	0	2	
\bar{d}_1	1	2		ℓ_1	1	2	$\overline{\delta}_1$	0	2		δ_1	0	2	
\overline{d}_2	1	2		ℓ_2	1	2	$\overline{\delta}_2$	0	0		δ_2	0	0	
\bar{d}_3	1	0		ℓ_3	1	0	$\overline{\delta}_3$	0	2		δ_3	0	0	
\overline{d}_4	1	0		ℓ_4	1	0	$\overline{\delta}_4$	0	2		δ_4	0	0	
d_1	1	2		$ \bar{\ell}_1 $	1	2								
\overline{e}_1	1	2												
\overline{e}_2	1	2												
ē ₃	1	0												

SU(5) relations $Y_e = Y_d$: good for 3rd generation but bad for 1st & 2nd

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_2^{\mathcal{M}} imes \mathbb{Z}_4^R$ quantum numbers & implications

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_4^{\mathsf{R}}$ anomaly

 $\mathbb{Z}_4^{\sf R}$ is anomalous (partly descends from the so-called 'anomalous ${\rm U}(1)')$

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_4^{\mathsf{R}}$ anomaly

 \mathbb{Z}_4^R is anomalous (partly descends from the so-called 'anomalous U(1)') Extra terms at the non-perturbative level:

• proton decay operators

 $[q \, q \, q \, q \, \ell]_{
m light generations} ~\sim~ \widetilde{\phi}^{15} \, {
m e}^{-a \, S}$

• mixing between first two and third generations

 $(Y_u)_{13} ~\sim~ \widetilde{\phi}^4 \, {\rm e}^{-aS}$

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_4^{\mathsf{R}}$ anomaly

 \mathbb{Z}_4^R is anomalous (partly descends from the so-called 'anomalous U(1)') Extra terms at the non-perturbative level:

• proton decay operators

 $[q \, q \, q \, q \, \ell]_{
m light generations} \sim \widetilde{\phi}^{15} \, {
m e}^{-aS}$

• mixing between first two and third generations

$$(Y_u)_{13} ~\sim~ \widetilde{\phi}^4 \, {\rm e}^{-aS}$$

'Anomalous' \mathbb{Z}_4^R explains suppressed μ term and relates the suppression of proton decay operators to mixing between first two and third generations

An SO(10) SUSY GUT example A string theory example

$\mathbb{Z}_4^{\mathsf{R}}$ anomaly

 \mathbb{Z}_4^R is anomalous (partly descends from the so-called 'anomalous U(1)') Extra terms at the non-perturbative level:

• proton decay operators

 $[q \, q \, q \, q \, \ell]_{
m light generations} \sim \widetilde{\phi}^{15} \, {
m e}^{-aS}$

• mixing between first two and third generations

$$(Y_u)_{13} ~\sim~ \widetilde{\phi}^4 \, {\rm e}^{-aS}$$

'Anomalous' \mathbb{Z}_4^R explains suppressed μ term and relates the suppression of proton decay operators to mixing between first two and third generations Many similar configurations...

Summary

We have shown

 \bullet how to obtain any discrete, abelian symmetry by spontaneous breaking $\mathrm{U}(1)^N$

There are of course other ways, e.g. extra dimensions

- how to eleminate redundancies for discrete, abelian symmetries
- how discrete anomalies influence a model
- how all this can be applied in model building

Summary

We have shown

• how to obtain any discrete, abelian symmetry by spontaneous breaking $\mathrm{U}(1)^N$

There are of course other ways, e.g. extra dimensions

- how to eleminate redundancies for discrete, abelian symmetries
- how discrete anomalies influence a model
- how all this can be applied in model building

Thank You!