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Lθ =
αs

8π
tr
�
Gµν

a
�Gaµν

�
θ

The paradigmatic example: Strong CP problem

Prediction:

θQCD ∈ (−π, π)

arg detMq ∼ O(1)?

dn ∼ 10−15θ ecm

Violates P and T

neutron EDM
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The paradigmatic example: Strong CP problem

Prediction:

θQCD ∈ (−π, π)

arg detMq ∼ O(1)?

dn ∼ 10−15θ ecm

Violates P and T

neutron EDM

dn < 2.6× 10−26 ecm

Non Observation:

Why ?????θ � 10−11
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symmetry, which is spontaneously broken at a 
high energy scale, >>> TeV
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Introduce a new axial global color-anomalous 
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Free parameter

The QCD induced potential is 
minimized for ...

θeff = θ +
�a�
fa

= 0

Massless Goldstone Boson: the axion
The axions adjusts its v.e.v. to cancel 

the effects of any theta!
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Axion mixes with QCD mesons and gets mass and couplings

Bare models

Extended models also feature couplings to leptons

Mass

Typical from Nambu-Goldstone Bosons
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Axion-like particles (ALPs)

 

Global continuous symmetry 
spontaneously broken at 
high energy scale M 

pseudo Goldstone bosons

0−

π0
η
η�

a
MAJORONS

FAMILONSR-AXION

Sizes and deformations of 
extra dimensions, 
gauge couplings

String ‘axions’ DILATONS RADION
MODULI

L = Lfree +
g

4
Fµν

�Fµνφ

g ∼ α/2πM

Reference model (this talk)

massmφ

independent
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Cosmology
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Energy content of the Universe today

Three unidentified substances make most of it!
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Can they be made out of WISPs?
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Dark Matter

What do we know about Dark Matter particles?

 - Dark -
in the sense that they 
interact very weakly 

with SM particles. 

(and among themselves)

 - Matter -
in the sense that are 

non-relativistic

(most of them)

Basically only what the name suggests:
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Dark Matter

What do we know about Dark Matter particles?

 - Dark -
in the sense that they 
interact very weakly 

with SM particles. 

(and among themselves)

 - Matter -
in the sense that are 

non-relativistic

(most of them)

Basically only what the name suggests:

Very W
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WISPy Dark matter is generically COLD!
During Inflation inhomogeneities in bosonic fields are stretched out.    

         Fields become ultra-homogeneous  (ultra COLD!)

φ(t)

φ0

t[1/mWISP]

0.001 0.01 0.1 1 10 100 1000
�0.5

0.0

0.5

1.0
Afterwards: 

φ = φ0 φ ∝ φ0
cosmt

a3/2φ̈+ 3Hφ̇+m
2
φ = (very weak interactions)

Evolution of homogeneous WISP field 
in expanding universe

p

ρ

Dark 
Energy

Dark 
Matter

0.01 0.1 1 10

�1.0

�0.5

0.0

0.5

1.0

Equation of state
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Right amount of WISPy Dark matter

The most important factor is the initial amplitude
it requires physics at very high energies at play

(Detecting WISPy DM opens a window to HEP!!!)

In the simplest ALP/HP models:

in a sense...
But this model is not very testable... unless
- Isocurvature perturbations
- ALPs form a BECs through gravity int. (Sikivie’s 2009)

recall ρCDM = 1.17(6)
keV

cm3

ρφ,0 � 1.17
keV

cm3
×

�
mφ

eV

�
φ0

4.8× 1011 GeV

�2

F ,
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And they imprint ISOCURVATURE perturbations

but this depends on H 
during inflation...
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One more level of complication

Consider an ALP with a two photon coupling

L = Lfree +
g

4
Fµν

�Fµνφ g ≡ α

2π

1

fφ
N

φ0 ∈ (−πfφ, πfφ)

Since the coupling is 1/f and the v.e.v. is O(f)
we can relate the DM abundance with coupling

φ0 <
αN
2

1

g

N ∼ O(1)

ρφ,0 � 1.17
keV

cm3
×

�
mφ

eV

�
0.8× 10−14 GeV−1

g

�2

FN 2,
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But ALPs decay

Γ =
g2m3

φ

64π
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Here they last 
too short to be 

DM today ...
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But ALPs decay and we don’t see the photons...

Γ =
g2m3

φ

64π
monochromatic line at 

λ = 2
2π

mφ

Galactic emission in the vis. 
(Ressell 91, Grin 2007)

Extragalactic Background Light 
(Overduin & Wesson)
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Galactic emission in the vis. 
(Ressell 91, Grin 2007)

Extragalactic Background Light 
(Overduin & Wesson)

Galactic FERMI gamma-ray (Vertongen 2011)

Galactic emissions in X-ray (from 0901.0011)
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Here the universe is not 
transparent ... and UV 
radiation ionizes the 

plasma too early
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And they are radiated from stars

(Primakoff process)

ZA+, e−

γ
φ

φ�s

ν�s

γ�s

This accelerates the nuclear reactions that 
power the star, and increases the speed of 

stellar evolution (most of the times) 
which is relatively well understood! 
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And CAST and SUMICO do not see them

??? ?????

Experiments looking for solar axions (see later)
didn’t found a trace so far...
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Standard ALP CDM not soooo promising for det.

Situation can change much if thermal mass

Damping of the oscillations starts when 

m = m(T )

φ(t)

φ0

0.001 0.01 0.1 1 10 100 1000
�0.5

0.0

0.5

1.0

φ = φ0 φ ∝ φ0
cosmt

a3/2

m(T1) ∼ 3H(T1)

3H

m0

T

t
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Standard ALP CDM not soooo promising for det.

Situation can change much if thermal mass

m = m(T )

ρφ,0 � 1.17
keV

cm3
×
�

m0

eV

�
m0

m1

�
φ0

4.8× 1011 GeV

�2

F ,

Damping of the oscillations starts when m(T1) ∼ 3H(T1)

m(T1) ≡ m1

(Assuming adiabatic evolution of number density)
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How small can be              ??m1

If we want the ALP to behave as CDM after 
standard Matter-Radiation equality Teq ∼ 1.3 eV

m0 > m1 > 3Heq = 1.8× 10−27 eV

29
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It is however to saturate this bound

Instantonic-like potentials (like for the axion)

m0

Λ T

mφ

31
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It is however kind of difficult to build such models

Instantonic-like potentials (like for the axion)

m0

Λ T

mφ H(T )

T1 � Λ

For a fixed                       does not helpm0, β → ∞
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Thermalization of ALP CDM I

Primakoff process very 
effective at high T ...

Γ

H
∝ g

2
mPlT

If ALP energy Ea ∼ T

When ALP energies 
the COM energy is not sufficient to produce a plasmon!

Ea = ma � T

s = m2
e +m2

a + 2Eema > (me +mγ)
2

Ee >
2memγ +m2

γ

2ma
� T

Exponentially 
suppressed!
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Thermalization of ALP CDM II

Add other photon in the 
initial state ...

To still find a suppression ∼ ma

T

φF �F ∼ (∂µφ)K
µ = mφK0

which makes it irrelevant in the region shown :-)
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Thermalization of ALP CDM III

Primordial Magnetic fields trigger                              φ ↔ �E

And Electric fields are amazingly damped, due to 
the huge conductivity of the primordial plasma 

However, the conductivity also enters into the 
mixing matrix... and highly suppresses mixing

σ ∼ T

α

L � g

4
Fµν

�Fµνφ = −g�B · �Eφ = (gB)E||φ

M2 =

�
imφσ gBmφ

gBmφ m2
φ

�
→ θeff ∼

(2gBm2
φ)

2

(m2
φ − ω2

P)
2 + (m2

φσ)
2
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Thermalization of ALP CDM III

Primordial Magnetic fields trigger                              φ ↔ �E

but very big fields (or very primordial) required

high T constraint

res. oscillations

(if B ∝ T 2)
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Laboratory Experiments

RochesterFermilab

Washington U. (ADMX)

Yale

DESY & Hamburg U.
(ALPS, SHIPS)

CERN (OSQAR,MW)

Trieste U. (PVLAS)Toulouse (BMV) 

Munich (ReLAxT)

Tokio (SUMICO)
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Cavity experiments looking for ALP CDM

based on                  mixing in a magnetic field
(detect a tiny electric field, oscillating at 
fixed frequency                 )

- ADMX, ADMX-II, and HF (Yale)
- Proposed at DESY, CERN
- IAXO
- UWA

They seem too few for such a 
wealth of possibilities !!!!!!!!!!!

φ ↔ �E

ω � mφ
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SN1987a

SN Γ"burst
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REAPR, ALPS"II IAXO
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B

Laboratory Experiments (just an important sample)

γ
Low Background

Detector
High Power 

Laser

Laser shining through walls (LSW)

Ehret et al. 2010

P (γ → φ) =

�
2gBω

m2
φ

�2

× sin2
m2

φL

4ω

φ

BNeeds B-field
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BNeeds B-field

44



Next Generation of LSW

Much longer experiments + 2nd resonant cavity
Hoogeveen 91, Sikivie 2009

O(100 m) Q ∼ 105

Two competing groups:
ALPS II @ DESY  vs. Fermilab
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Other experiments are sensible to ALPs

- International Solar observatory

- B’s of order 5 T, 
- L= 20 m
- Zero backgrounds
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high mass
messenger
particles

γ γ�

Local U(1)’s: Hidden Photons & kinetic mixing

Extra U(1) symmetries are ubiquitous BSM (for instance in String Theory)

If the corresponding Hidden photon does not couple to SM particles -> 
HIDDEN PHOTON
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high mass
messenger
particles

γ γ�

Local U(1)’s: Hidden Photons & kinetic mixing

Extra U(1) symmetries are ubiquitous BSM (for instance in String Theory)

Kinetic mixing is the 
most relevant interaction 

at low energies
LI = −1

2
χFµνB

µν

If the corresponding Hidden photon does not couple to SM particles -> 
HIDDEN PHOTON
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Size of kinetic mixing

Natural size: radiative correction 

natural value
not soooo small!

χ ∼ egh
16π2

log
m

µ
∼ 10−3
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Size of kinetic mixing

Natural size: radiative correction 

natural value
not soooo small!

χ ∼ egh
16π2

log
m

µ
∼ 10−3

But can be much smaller !!!!
if hyperweak hidden gauge coupling 
or cancelations between contributions

Again a huge parameter 
space to explore, even in 

the minimal case!

49



10�2 10�1 1 10 102
104
105
106
107
108
109
1010
1011
1012
1013
1014
1015
1016
1017
1018

T�keV�

�2
H Χ2

Crucial Differences

- The initial value of amplitude is not bounded!

- No phase transitions (no CSs, DWs ... well...)

- HPs mix directly with 
  Photons (no need for B)
  (resonance transitions 
   can evaporate HP CDM)

- Small E field in the 
universe

- ADMX-lie exps. do not 
  need B field
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WISPy Dark matter: Example II (Hidden Photon)

Nelson & Scholtz, Arias et al.
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Conclusions

   - Extensions of the SM might well accommodate WISPs 

The Strong CP problem cries for an axion

   - Cosmology cries for WISPs!

Dark Matter, (Dark Radiation, Dark Energy)
                     
- WISPs can be searched experimentally 

New Axion/ALP/HP cold dark matter experiments !!!
Next generation experiments (ALPS II, IAXO)
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