Neutrino properties from cosmological observables after Planck

Sergio Pastor (IFIC Valencia)

Max-Planck-Institut für Kernphysik 17 June 2013

Outline

Introduction: the Cosmic Neutrino Background

The radiation content of the Universe (N_{eff})

Bounds on neutrino properties from Planck (& other cosmo data) Introduction: the Cosmic Neutrino Background

v Decoupling and e[±] annihilations

Neutrino cosmology is interesting because Relic neutrinos are very abundant:

- The CNB contributes to radiation at early times and to matter at late times (info on the number of neutrinos and their masses)
- Cosmological observables can be used to test standard or non-standard neutrino properties

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species

$$F_{v}(\mathbf{p},\mathsf{T})=\frac{1}{e^{\mathbf{p}/\mathsf{T}_{v}}+1}$$

Number density

$$n_{v} = \int \frac{d^{3}p}{(2\pi)^{3}} f_{v}(p, T_{v}) = \frac{3}{11} n_{v} = \frac{6\zeta(3)}{11\pi^{2}} T_{CMB}^{3}$$

• Energy density

$$\rho_{v_i} = \int \sqrt{p^2 + m_{v_i}^2} \frac{d^3 p}{(2\pi)^3} f_v(p, T_v) \to \frac{7\pi^2}{120} \left(\frac{4}{11}\right)^{4/3} T_{CMB}^4 \quad \text{Massless}$$

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species

• Number density

At present 112 $(\nu+ar{
u})$ cm⁻³ per flavour

• Energy density

Contribution to the energy density of the Universe

 $\Omega_{\nu}h^2 \simeq 1.7 \times 10^{-5}$ Massless $\Omega_i = \rho_i/\rho_{\rm crit}$

$$(p,T)=\frac{1}{e^{p/T_v}+1}$$

 f_{v}

 $f_{v}(p,T) = \frac{1}{e^{p/T_{v}} + 1}$

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species

• Number density

At present 112 $(\nu+\bar{
u})$ cm⁻³ per flavour

• Energy density

Contribution to the energy density of the Universe
$$\begin{aligned} \Omega_{\nu}h^2 &\simeq & 1.7\times 10^{-5} \text{ Massless} \\ \Omega_{\nu}h^2 &= & \frac{\sum_i m_{\nu_i}}{94.1 \text{ eV}} \text{ Massive } \\ m_{\rm v} >> {\rm T} \end{aligned}$$

Neutrinos as Dark Matter

We know that flavour neutrino oscillations exist

From present evidences of oscillations from experiments measuring atmospheric, solar, reactor and accelerator neutrinos

see also Fogli et al, 86 (2012) 073012; González-García et al, JHEP 1212 (2012) 123

Neutrino masses

$$\nu_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} \nu_{iL}, \quad (\alpha = e, \mu, \tau)$$

Neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

Neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

 $f_{v}(p,T) = \frac{1}{e^{p/T_{v}} + 1}$

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species

• Number density

At present 112 $(\nu+\bar{
u})$ cm⁻³ per flavour

• Energy density

Contribution to the energy density of the Universe
$$\begin{aligned} \Omega_{\nu}h^2 &\simeq & 1.7\times 10^{-5} \text{ Massless} \\ \Omega_{\nu}h^2 &= & \frac{\sum_i m_{\nu_i}}{94.1 \text{ eV}} \text{ Massive } \\ m_{\rm v} >> {\rm T} \end{aligned}$$

Evolution of the background densities: 1 MeV \rightarrow now

Neutrinos as Dark Matter

• Neutrinos are natural DM candidates

$$\Omega_{\nu}h^{2} = \frac{\sum_{i} m_{i}}{93.2 \text{ eV}} \qquad \Omega_{\nu} < 1 \rightarrow \sum_{i} m_{i} \lesssim 46 \text{ eV}$$
$$\Omega_{\nu} < \Omega_{m} \simeq 0.3 \rightarrow \sum_{i} m_{i} \lesssim 15 \text{ eV}$$

- They stream freely until non-relativistic (collisionless phase mixing)
 Neutrinos are HOT Dark Matter (large thermal motion)
- First structures to be formed when Universe became matter –dominated are very large
- Ruled out by structure formation CDM

The radiation content of the Universe (Neff)

Relativistic particles in the Universe

At T<m_e, the radiation content of the Universe is

$$\rho_{\rm r} = \rho_{\gamma} + \rho_{\nu} + \rho_x = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right] \rho_{\gamma}$$

Effective number of relativistic neutrino species Traditional parametrization of ρ stored in relativistic particles

 N_{eff} is a way to measure the ratio $\frac{\rho_{\nu} + \rho_x}{\rho_{\gamma}}$

> standard neutrinos only: $N_{eff} \simeq 3$ (3.046)

N_{eff} > 3 (delays equality time) from additional relativistic particles (scalars, pseudoscalars, decay products of heavy particles,...) or non-standard neutrino physics (primordial neutrino asymmetries, totally or partially thermalized light sterile neutrinos, non-standard interactions with electrons,...)

Neff < 3 ?

Neff < 3 ?

Neff & Active-sterile neutrino oscillations

Neff & Active-sterile neutrino oscillations

Hannestad, Tamborra & Tram, JCAP 07 (2012) 025

Cosmological Observables

Cosmological Observables Ordinally matter particles are coupled to light and

Ordinary matter particles fall into th Stuctures created by dall matter

First stars & galaxies

1 billion Heat

Ordinall matter particles decouple from light an the Cosmic Microuzue Badgoound is released

200 million years

daw mater particles start building structures

Primordial abundances of light elements: Big Bang Nucleosynthesis (BBN)

380 000 Hears

cosmic inflation furtuations

Big Bang

10³² seconds seconds 10³⁰ seconds 10³⁰ seconds

particles form

BBN: last epoch sensitive to neutrino flavour Bound on N_{eff} (typically N_{eff}<4)

the

sters of galaxies and superdusters form

13.82 billion years

63349 evolution

10 billion year

from J. Lesgourgues

CMB data before Planck

Data analysis refined: better treatment of the different frequency channels

Hinshaw et al, arXiv:1212.5226

CMB data before Planck

Ground telescopes have better angular resolution: measure the CMB spectrum at high I's

ACT, Sievers et al, arXiv:1301.0824

CMB data from Planck

P.A.R. Ade et al, arXiv:1303.5076

Present CMB data

Bounds on neutrino properties from Planck (& other cosmo data)

The minimal ΛCDM model fits very well the data

	Planck	Planck (CMB+lensing)		WP+highL+BAO
Parameter	Best fit	68 % limits	Best fit	68 % limits
$\Omega_{\rm b}h^2$	0.022242	0.02217 ± 0.00033	0.022161	0.02214 ± 0.00024
$\Omega_c h^2$	0.11805	0.1186 ± 0.0031	0.11889	0.1187 ± 0.0017
100θ _{MC}	1.04150	1.04141 ± 0.00067	1.04148	1.04147 ± 0.00056
τ	0.0949	0.089 ± 0.032	0.0952	0.092 ± 0.013
<i>n</i> _s	0.9675	0.9635 ± 0.0094	0.9611	0.9608 ± 0.0054
$\ln(10^{10}A_{\rm s})$	3.098	3.085 ± 0.057	3.0973	3.091 ± 0.025
Ω_{Λ}	0.6964	0.693 ± 0.019	0.6914	0.692 ± 0.010
σ_8	0.8285	0.823 ± 0.018	0.8288	0.826 ± 0.012
Zre	11.45	$10.8^{+3.1}_{-2.5}$	11.52	11.3 ± 1.1
H_0	68.14	67.9 ± 1.5	67.77	67.80 ± 0.77
Age/Gyr	13.784	13.796 ± 0.058	13.7965	13.798 ± 0.037
100 <i>θ</i> .	1.04164	1.04156 ± 0.00066	1.04163	1.04162 ± 0.00056
<i>r</i> _{drag}	147.74	147.70 ± 0.63	147.611	147.68 ± 0.45
$r_{\rm drag}/D_{\rm V}(0.57)$	0.07207	0.0719 ± 0.0011		

The minimal Λ CDM model fits very well the data

Parameter	Planck	WMAP	Difference	
	("CMB+Lens")	(9-year)	value	WMAP σ
$\Omega_b h^2$	0.02217 ± 0.00033	0.02264 ± 0.00050	-0.00047	0.9
$\Omega_c h^2$	0.1186 ± 0.0031	0.1138 ± 0.0045	0.0048	1.1
Ω_{Λ}	0.693 ± 0.019	0.721 ± 0.025	-0.028	1.1
au	0.089 ± 0.032	0.089 ± 0.014	0	0
$t_0 { m (Gyr)}$	13.796 ± 0.058	13.74 ± 0.11	$56 { m ~Myr}$	0.5
$H_0 ~({ m km~s^{-1}Mpc^{-1}})$	67.9 ± 1.5	70.0 ± 2.2	-2.1	1.0
σ_8	0.823 ± 0.018	0.821 ± 0.023	0.002	0.1
Ω_b	$0.0481^{ m b}$	0.0463 ± 0.0024	0.0018	0.7
Ω_c	$0.257^{ m b}$	0.233 ± 0.023	0.024	1.0

Comparison of *Planck*-only and *WMAP*-only Six-Parameter Λ CDM Fits^a

^aThe new *Planck* results strongly favor the standard six-parameter Λ CDM model with parameter values that are consistent with *WMAP* parameters, as shown in this table which compares results derived entirely from *Planck* data with those derived entirely from *WMAP* data.

^bParameters derived from quoted values. No error estimate is given for this data/model combination.

What ingredient, in your opinion, should be mandatory to change in the ACDM?

Planck collaboration has already added massive neutrinos in the vanilla-six parameter model, with $\Sigma m_{v,fiducial} = 0.06 \text{ eV}!$

- N_{eff} is a parameter for the relativistic density in general
- "background effects" (change in expansion history) versus "perturbation effects" (gravitational interactions between photons and relativistic species)
- "effect of N_{eff}" depends on what is kept fixed.
- Fixing quantities best probed by CMB (angular peak scale, redshift of equality, ...):
 - possible with simultaneous enhancement of radiation, matter, Λ densities, with fixed photon and baryon densities
 - then increase in N_{eff} goes with increase in H₀: positive correlation between the two

• Fixing quantities best probed by CMB (angular peak scale, redshift of equality, ...):

simultaneous enhancement of radiation, matter, L densities, with fixed photon and baryon densities

- Ultimately, constraints driven by CMB damping tail
 - WMAP+SPT see anomalously low tail: N_{eff} > 3 at 2 sigma
 - Planck and Planck+BAO well compatible with 3.046 at 1 sigma
 - Planck (+BAO) + HST: enforce higher H₀, hence also higher N_{eff}

- Ultimately, constraints driven by CMB damping tail
 - WMAP+SPT see anomalously low tail: N_{eff} > 3 at 2 sigma
 - Planck and Planck+BAO well compatible with 3.046 at 1 sigma
 - Planck (+BAO) + HST: enforce higher H₀, hence also higher N_{eff}
- CMB alone (Planck+WP+HighL)

 $\mathrm{N_{eff}=3.36^{+0.68}_{-0.64}}$

• With lensing and BAO:

 $\mathrm{N_{eff}=3.30^{+0.54}_{-0.51}}$

• With H $_0$ and BAO: $\mathrm{N}_{\mathrm{eff}} = \mathbf{3.52}^{+0.48}_{-0.45}$

all 95%CL

Measuring m_{ν} with the CMB

- Neutrinos contribute to radiation at early times and non-relativistic matter at late times
- If $m_v < 0.6 \text{ eV}$, neutrinos are relativistic at photon decoupling. In principle the primary CMB TT spectrum sensitive to $\Sigma m_v > 1.5 \text{ eV}$
- "effect of m_v " depends on what is kept fixed
- Leave both "early cosmology" and angular diameter dist. to decoupling invariant:
 - Possible by fixing photon, cdm and baryon densities, while tuning H₀, W_L
 - then increase in m_n goes with decrease in H₀: negative correlation between the two
 - "base model" in Planck has (0.06, 0, 0) eV masses: shifts best-fitting H₀ by -0.6 h/km/Mpc with respect to massless case

Measuring $\mathbf{m}_{\mathbf{v}}$ with the CMB

• Leaving both "early cosmology" and angular diameter dist. to decoupling invariant:

fixing photon, cdm and baryon densities, while tuning H_0 , Ω_{Λ}

Measuring m_{ν} with Planck

CMB alone (Planck+WP+HighL):

All 95% CL. Robust w.r.t cosmological extensions (except for curvature: weakens 50%)

Measuring $m_v \& N_{eff}$ with Planck

Results are practically <u>unchanged</u>

Probing the absolute neutrino mass scale

Tritium
$$\beta$$
 decay $m_{\beta} = \left(\sum_{i} |U_{ei}|^2 m_i^2\right)^{1/2}$ 2.2 eV
 $[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2]^{1/2}$
Neutrinoless
double beta
decay $m_{\beta\beta} = \left|\sum_{i} U_{ei}^2 m_i\right| < 0.2$ -0.8 eV
 $|c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}|$

$\sim \sum_{i} m_{i}$	< 0.23-1.0 eV
	$\sim \sum_{i} m_{i}$

Tritium β decay, $0v2\beta$ and Cosmology

Measuring m_v(sterile) & N_{eff} with Planck Planck analysis of 3+1 neutrino scenarios (m_v^{eff}). Two cases: extra state with T_s or with rescaled spectrum 0.5 0.136 for $m_{\text{sterile}}^{\text{thermal}} < 10 \,\text{eV}$ 20 0.128 4.5 CMB alone (Planck+WP+HighL): 0.120 $N_{\rm eff} < 3.91$ $m_{\nu, \, \rm sterile}^{\rm eff} < 0.59 \, {\rm eV}$ N_{eff} 0.112 5 4.0 0.104 With BAO: 0.096 3.5 $N_{\rm eff} < 3.80$ 0.088 $m_{\nu, \text{ sterile}}^{\text{eff}} < 0.42 \,\text{eV}$ 10.0 0.0 0.6 1.2 1.8 2.4 All 95% CL $m_{\nu,\,\rm sterile}^{\rm eff}\,[{\rm eV}]$

Contours of equal m_v^{eff}

Future sensitivities to N_{eff} and Σm_{v}

Example of forecast: PLANCK + Euclid-like photometric galaxy cluster survey

Future sensitivities on neutrino masses

	95% (
Probe	Current	Forecast	Key systematics	Current surveys	Future surveys
	$\sum m_v$ (eV)	$\sum m_{v}$ (eV)		,	
CMB primordial	1.3	0.6	Recombination	WMAP, Planck [95]	None
CMB primordial + Distance	0.58	0.35	Distance	WMAP, Planck	None
end printeralar v bistance	0.00	0.00	measurements	······	lone
Lensing of CMB	00	0.2 – 0.05	NG of Secondary	Planck, ACT [38], SPT [97]	EBEX [58], ACTPol [53], SPTPol, POLARBEAR [3],
			anisotropies		CMBPol [4]
Galaxy distribution	0.6	0.1	Nonlinearities, Bias	SDSS [59,60], BOSS [83]	DES [85], BigBOSS [82], DESpec [86], LSST [93],
					Subaru PFS [98], HETDEX [34]
Lensing of Galaxies	0.6	0.07	Baryons, NL,	CFHT-LS [22], COSMOS [49]	DES [85], Hyper SuprimeCam [52], LSST [93],
			Photometric redshifts		Euclid [89], WFIRST[101]
Lyman α	0.2	0.1	Bias, Metals, QSO	SDSS, BOSS, Keck	BigBOSS[82], TMT[100], GMT[90]
-			continuum		
21 cm	∞	0.1 - 0.006	Foregrounds,	GBT [10], LOFAR [92], PAPER	MWA [94], SKA [96], FFTT [48]
			Astrophysical modeling	[54], GMRT [87]	
Galaxy clusters	0.3	0.1	Mass Function, Mass	SDSS, SPT, ACT, XMM [102]	DES, eRosita [88], LSST
-			Calibration	Chandra [84]	

Abazajian et al, Astrop. Phys. 35 (2011) 177

Future sensitivities on neutrino masses

	5-7 years	7-15 years
Probe	Potential sensitivity (short term)	Potential sensitivity (long term)
CMB	0.4-0.6	0.4
CMB with lensing	0.1-0.15	0.04
CMB + Galaxy Distribution	0.2	0.05-0.1
CMB + Lensing of Galaxies	0.1	0.03-0.04
$CMB + Lyman-\alpha$	0.1-0.2	Unknown
CMB + Galaxy Clusters	-	0.05
CMB + 21 cm	-	0.0003-0.1

Table 1. Future probes of neutrino mass, as well as their projected sensitivity to neutrino mass. Sensitivity in the short term means achievable in approximately 5-7 years, while long term means 7-15 years.

Hannestad, Progr. Part. Nucl. Phys. 65 (2010) 185

Conclusions

 ✓ With Planck data, including CMB lensing, we can measure combinations of cosmological parameters with high precision.
 Still ΛCDM fits very well the data

✓ No evidence yet for nonzero neutrino masses or an enhanced radiation density (N_{eff}). At 95% CL, bounds $\Sigma m_v < 0.23-0.85 \text{ eV}$ and N_{eff} between 2.79-3.84 or 3.14-4.12, depending on data

 Improved sensitivities from a variety of cosmological data (Planck polarization in 2014, cosmic shear surveys...) to reach Σm_v < 0.1 eV

For more details...

NEUTRINO COSMOLOGY

Julien Lesgourgues Gianpiero Mangano Gennaro Miele Sergio Pastor

