Low energy calibration of liquid xenon detectors

Teresa Marrodán Undagoitia

marrodan@mpi-hd.mpg.de

Kaffeepalaver, MPIK Heidelberg, May 2013

Outline

2 Scattering of dark matter particles off nuclei ...

Motivation

After Planck: 26.8% of the Universe is made of Dark Matter

 \rightarrow Astronomical evidences:

Star rotation curves, Gravitational lensing, Galaxy clusters ...

Most general theoretical approach:

WIMP

(Weakly Interacting Massive Particle)

A different possibility:

Light DM particle

(such that it scatters off electrons)

Direct dark matter detection

Detection via elastic scattering off nuclei \rightarrow nuclear recoils electrons \rightarrow electronic recoils

Detector response and discrimination

Two phase xenon TPC

- Scintillation signal (S1)
- Proportional signal (S2)

- → Electronic/nuclear recoil discrimination
 - Energy scales for NR and ER based on S1!
 - Quenching processes are different for NR and ER

The XENON100 experiment

International collaboration

- $\bullet\,$ 30 cm length and 30 cm \varnothing
- 161 kg LXe (30-50 kg fiducial mass)
- Selected very low radioactivity materials

Bottom PMT array

Top PMT array

Located at LNGS underground lab (Italy)

XENON100: discrimination

- Electronic recoil band: defined with ⁶⁰Co and ²³²Th sources
- Nuclear recoil band: defined with AmBe neutron source

S1: number of photoelectrons detected by the photosensors (corrected for spatial light collection variations)

 keV_{nr} : derived energy scale

L_{eff} direct measurements

Nuclear recoil energy (Enr):

 $E_{nr} = rac{S1}{L_y L_{eff}} imes rac{S_e}{S_r}$

S1: measured signal in p.e.

 L_y : LY for 122 keV γ in PE/keV

 S_e/S_r : quenching for 122 keV γ /NR due to drift field

 $L_{\textit{eff}} = q_{\textit{nucl}} imes q_{\textit{el}} imes q_{\textit{esc}}$

Results from 225 live days data (2012)

- Background expectation in the benchmark region: (1.0±0.2) events
- → Exclusion limit derived using profile likelihood method

Result of a direct DM detection experiment

→ Statistical significance of signal over expected background?

- Positive signal
 - Region in σ_{χ} versus m_{χ}
- Zero signal
 - Exclusion of a parameter region
 - o Low WIMP masses: detector threshold matters
 - o Minimum of the curve: depends on target nuclei
 - o High WIMP masses: exposure matters

 $\epsilon = m \times t$

Results from XENON100

Spin-independent: 2×10^{-45} cm² at 55 GeV/c² WIMP mass XENON100, Phys. Rev. Lett. 109 (2012) 181301 $\begin{array}{l} Spin-dependent:\\ 3.5\times10^{-40}\,cm^2 \text{ at } 45\,GeV/c^2\\ WIMP \text{ mass}\\ {}_{\text{XENON100, arXiv:1301.6620}} \end{array}$

Verification of nuclear recoil energy scale

Monte Carlo simulation of neutron source

XENON100, arXiv:1304.1427 (work of M. Weber (MPIK))

- Input AmBe spectrum (ISO 8529-1 standard). Analysis robust against variations of this spectrum
- Source strength measured at the German Metrology Institute (PTB) $160 \pm 4 \text{ n/s}$
- Complete Monte Carlo description of the detector including detector shield (water, lead, polyethylen and copper)
- *E*_{dep} is converted to S1 and S2 including thresholds, resolutions and acceptances from data

MC simulation of neutron source

- Step 1: Using L_{eff} from direct measurements, reproduce S2 spectrum \rightarrow obtain optimum Q_{γ}
- Step 2: Using the obtained Q_y , reproduce S1 spectrum \rightarrow obtain a new L_{eff}

Best fit of source strength: 159 n/s

MC simulation of neutron source

- Poor agreement below 2 PE due to unknown efficiencies below threshold
- Good overall agreement. Best fit *L_{eff}* matches previous measurements
- \rightarrow Results of XENON100 remain unchanged using this L_{eff}

Recent results from CDMS

CDMS Si results from April 15th 140 kg-day exposure 3 events detected (0.7 expected) Likelihood analysis: 0.19% probability that the known-background-only hypothesis

 \cdot Best fit at 1.9 \times 10 $^{-41}\,cm^2$ at 8.6 GeV/ c^2 WIMP mass

CDMS, arXiv: 1304.4279

How would CDMS signal look in XENON100?

Event distribution that XENON100 would observe for $\sigma = 1.9 \times 10^{-41}$ cm² and 8.6 GeV/ c^2 WIMP mass

A different signature of dark matter

DAMA annual modulation

- Ultra radio-pure Nal crystals
- Annual modulation of the background rate in the energy region (2 – 5) keV
- What if the DM particle scatters off electrons?

R. Bernabei et al., Eur. Phys. J. C67, 39 (2010)

Calibration data in XENON100

Electronic recoil region: energy calibration necessary S1 [PE] 10 0.4 0.2 log₁₀(S2_b/S1)-ER mean 0.0 -0.2 0.4 -1.0 -1.2 15 20 Energy [keVnr]

Nuclear recoil calibration provides inelastic mono-energetic lines and metastable states: 40, 80, 164 and 236 keV

Calibration using ^{83m}Kr

• ^{83m}Kr calibration source:

- EC decay-product of ⁸³Rb
- Lines at 9.4 and 32.1 keV

41.5 keV (1.83 h)

- Uniform distribution

^{83m}Kr

- Target mass: \sim 0.1 kg LXe
- Volume: 3 cm drift length and 3.5 cm diameter
- Two R9869 PMTs
- 6 pe/keV in double phase
- → at University of Zürich

A. Manalasay et al., Rev. Sci. Instr. 81, 073303 (2010), 0908.0616

Compton measurement: low energy electron recoils

Determination of LXe light yield at small scattering angles \rightarrow electron energies down to $\sim 1.5\,keV$

Setup:

- γ -rays from a ¹³⁷Cs source
- Energies < 9.4 keV
 - $ightarrow\,<$ 8.5° scattering angle
- Goniometer 0.25° ticks
- γ's collimated at the source and after LXe scattering
- Coincidence detector: Nal 3" crystal

Data selection

- Selection of full absorption peak (green)
- asymmetric in energy to reduce multiple scatters
- asymmetric in ToF to account for early events (few PE pulses in LXe)
- Background estimation from side bands (accidental triggers, blue)

NR scale

Monte Carlo simulation

- → Complete setup simulated with Geant4
- Multiple scatters: 1.6%
- Scatters off detector materials: 5.8%

- Broad raw energy spectrum
- Asymmetric spectra: *E_{er}* quadratic in *θ* for small *θ*
- MC data converted into scintillation signal

MC/data fitting

- LY is allowed to have a slope in the region fitted
- Systematic uncertainties
 - Scattering angle
 - Variation fit range
 - LY dependence on source strength
 - PMT coincidence requirement
 - LY variations during the measurement

Results of the Compton experiment

- Light yield decreases at 0-field below 40 keV (reduced electron-ion recombination)
- Field quenching $\sim 75\%$ at low energies

arXiv:1303.6891

Implications for dark matter search

Experiment	$\left ec{\mathbf{E}} ight \left(\mathrm{V/cm} ight)$	$S1_{\rm thr}$ (PE)	$LY_{\rm Co}(\frac{{ m PE}}{{ m keV}})$	$E_{ m thr}(m keV)$
ZEPLIN-III	3400	2.6	1.3	$2.4\substack{+0.5 \\ -0.4}$
XENON10	730	4.4	3.0	$1.8\substack{+0.4 \\ -0.3}$
XENON100	530	3.0	2.3	$1.7\substack{+0.4 \\ -0.3}$
XMASS	0	4.0	14.7	$1.1\substack{+0.4 \\ -0.2}$

 \rightarrow DAMA signal can be tested in XENON100!

Analysis of time variations of ER rate currently ongoing

Summary

- Scattering of WIMPs off nuclei
 - XENON100 excludes the current indications of DM
 - Energy threshold (*L_{eff}*) verified with MC/data comparison of an AmBe neutron source
- Scattering of light dark matter particles off electrons
 - Compton experiment to determine the energy threshold for electronic recoils
 - XENON100 threshold is at $\sim 2\,\text{keV}$
 - \rightarrow sensitive to DAMA annual modulation energy region
 - XENON100 analysis of time variations of the background rate ongoing

Noble gas scintillation process

