Flavor-Symmetry based Flavor Violation and CP Violation in Supersymmetry

> Jisuke Kubo (kanazawa Univ.) at MPI, Heidelberg.

> > based on:

Babu and JK, PRD71, 056006 (2005); Itou, Kajiyama and JK, NPB743, 74 (2006); Kifune, JK and Lenz, PRD77, 076010 (2008); Araki and JK, IJMod.A24, 5831 (2009); Kawashima, JK and Lenz, PLB681,60 (2009); JK and Lenz, PRD82,075001 (2010); Kaburaki, Konya, JK and Lenz, arXiv:1012.2435; Babu, Kawashima and Kubo, arXiv:1103.1664

Minimal Flavor Violation (MFV)
versusFlavor-Symmetry -based Flavor Violation (FSbFV)The basic idea is similar.
3 Q, 3 uR, 3dR, 3L, 3 eR(Chivukula+Georgi'87;
Hall+Randall'90;
D'Ambrosio et al, '02 etc)
$$G_F = [U(3)]^5 \rightarrow U(1)_B \times U(1)_L$$
by YukawasMFVFSbFVA subgroup of Cr is realized

(D'Ambrosio et al, `02)

Yukawas = Aux. fields

CP <= only CKM

FSbFV A subgroup of GF is realized. CP and FCNC are controlled by a symmetry.

Model

Hypothesis

PLAN

I Where do non-abelian discrete family symmetries come from?

II A concrete SUSY model based on Q6 x Z4 x CP

III Flavor-Symmetry based FCNC and CP

CP in B mixing

I Where do discrete family symmetries come from?

*It is simply there!

**It comes from SSB of a non-abelian continuous G* (e.g. Berger, Grossman, `09; Adulpravichai, Blum,Lindner,`09; Luhn, `11).

*It comes from the geometry of extra dimensions.

Orbifold symmetry x Abelian discrete symmetry

 $S_1/Z_2 \ , \ T^2/Z_3$

Non-abelian family symmetry

 $D_N \ Q_{2N} \ A_4 \ S_4 \ \Sigma(2N^2) \ \Delta(2N^2, 6N^2)$

(See also Adulpravichai, Blum, Lindner, `09)

orbifold	flavor symmetry	
$\mathbb{S}^1/\mathbb{Z}_2$	$D_4 = S_2 \ltimes (\mathbb{Z}_2 \times \mathbb{Z}_2)$	
$\mathbb{T}^2/\mathbb{Z}_2$	$(D_4 \times D_4)/\mathbb{Z}_2 = (S_2 \times S_2) \ltimes \mathbb{Z}_2^3$	In string theory :
$\mathbb{T}^2/\mathbb{Z}_3$	$\Delta(54) = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3)$	*V 1 1 D 1 771
$\mathbb{T}^2/\mathbb{Z}_4$	$(D_4 imes \mathbb{Z}_4)/\mathbb{Z}_2$	*Kobayashi, Raby+Zhang, 03; 05 *Kobayashi, Nilles, Plöger, Rahv+ Ratz. `06: Ahe et al. `09
$\mathbb{T}^2/\mathbb{Z}_6$	trivial	, 100 j · 100 c, 120 c w, 0 j
$\mathbb{T}^4/\mathbb{Z}_8$	$(D_4 imes \mathbb{Z}_8)/\mathbb{Z}_2$	
$\mathbb{T}^4/\mathbb{Z}_{12}$	trivial	
$\mathbb{T}^6/\mathbb{Z}_7$	$S_7 \ltimes (\mathbb{Z}_7)^6$	
	8	

Frampton+Kephart, `95; Frampton+Kong, `96

II A concrete SUSY model based on Q6 x Z4 x CP

Babu and JK, PRD71, 056006 (2005); and to appear.

SM non-singlet

	$\left\{Q,L\right\}$	$\{Q_3, L_3\}$	$\{u^c, d^c, \nu^c, e^c\}$	$\{u_3^c, d_3^c, \nu_3^c, e_3^c\}$	$H^{u,d}$	$H_3^{u,d}$	S	S_3	T	T_3	U
Q_6	2	1′	2'	1‴	2'	1‴	2	1	2'	1′	1
Z_4	-i	-i	+	+	i	i			+	+	+

2+*I*=3 structure except U Each sector, except U, forms a family with parents + one child

The SM singlet sector breaks Q6 x Z4 x CP spontaneously.

Accidental permutation symmetries of VHiggs

Vacuum I:
$$\langle H_1^{u,d} \rangle = \langle H_2^{u,d} \rangle \cdots$$

Vacuum II: $\langle H_1^{u,d} \rangle = \langle H_2^{u,d} \rangle^* \dots$

Two minima are physically different.

9 theory parameters for6 quark masses and 4 CKM parameters.

One sum rule among them

The mass matrix in the quark sector (up and down) is of the nearest neighbor type.

$$M_{I} = \begin{pmatrix} 0 & C & B \\ -C & 0 & B \\ B' & B' & A \end{pmatrix} , M_{II} = \begin{pmatrix} 0 & C & B \\ -C & 0 & B^{*} \\ B' & B'^{*} & A \end{pmatrix}$$

(Fritzsch, `78)

Spontaneous CP

C and A are real and $\arg[B] = \arg[B']$

(Precise) quark masses

HPQCD, arXiv:1004.4285 [hep-lat] Conlangelo in this conference

 Δm_b : 4% $\rightarrow 0.7\%$

 Δm_c : 9% $\rightarrow 1.3\%$

 Δm_s : $33\% \rightarrow 1.4\%$

 $\Delta m_u : 38\% \to 5\%$ $\Delta m_d : 27\% \to 3\%$

Input : $\lambda = 0.22465 \sim 0.22619$, $A = 0.784 \sim 0.825$

theory parameters for 3+3 masses and 1+2 phases.

Only an inverted ν mass spectrum is consistent!

Vacuum I: negligible because $\sin \theta_{13} \simeq 0$

Vacuum II

$$\mu \to e\gamma$$

$$\gamma$$

$$m_{\tau}$$

$$T_{L}$$

$$m_{\tau}$$

$$T_{R}$$

$$\phi_{H,-}$$

$$e_{R}$$

$$\sim m_{\tau}$$

$$\sim m_{\mu}(\frac{m_{e}}{m_{\mu}})^{2}$$

$$B(\mu \to e\gamma) \sim \frac{\alpha}{\pi} (\frac{m_{e}}{m_{\mu}})^{4} (\frac{m_{\tau}}{M_{H}})^{4} \sim 10^{-20} \text{ for } M_{H} = 120 \text{ GeV}$$

$$B(\mu \to e\gamma)^{\exp} < 1.2 \times 10^{-11} \text{ Mondragon x2, Pained, 07}$$

$$b_{A}^{I} = 0.5 \qquad 0.6 \qquad 0.7 \qquad 0.8 \qquad 0.9 \qquad 0.9$$

FCNC and CP in the SUSY sector

Mismatch between flavors Soft mass insertions

Hall, Kostelecky and Raby

Susy Flavor Problem.

Introduce low-energy family symmetry

to constrain the Yukawa sector, and simultaneously to soften the SUSY flavor problem. (Dine,Leigh+Kagan, `93; Pouliot+Seiberg, `93; Kaplan+Schmalz, `94; Hall+Murayama, `95; Carone, Hall+Murayama, `96; Babu+Barr, `96; Babu+Mohapatra, `99; Chen+Mahanthappa `02; Babu, Kobayashi+Kubo, `03; Hamaguchi,Kakizaki+Yamaguchi, `03; Ross, Velasco-Sevilla+Vives, `03; King+Ross, `03; Maekawa+Yamashita, `04; Ross, Velasco-Sevilla+Vives, `04;

Combine spontaneous CP violation to suppress CP , Babu+JK,`05

Q6<u>FCNCs induced by the soft terms</u> Kobayashi, JK+Terao, `03; Itou,Kajiyama+JK, `05

Lepton sector

			_			
	Exp. bound	Q_6 Model	m_{e}			
$ (\delta^e_{12})_{LL} $	$4.0 \times 10^{-5} \tilde{m}_{\tilde{\ell}}^2$	$4.9 \times 10^{-3} \Delta a_L^\ell$				
$ (\delta^e_{12})_{RR} $	$9 \times 10^{-4} \ \tilde{m}_{\tilde{\ell}}^2$	$8.4 \times 10^{-8} \Delta a_R^e$	$\mid m_{\mu} \mid$			
$ (\delta_{12}^e)_{LR} $	$8.4 \times 10^{-7} \ \tilde{m}_{\tilde{\ell}}^2$	$\sim 5 \times 10^{-6} \tilde{m}_{\tilde{\ell}}^{-1}$	mm			
$ (\delta^e_{13})_{LL} $	$2 \times 10^{-2} \tilde{m}_{\tilde{\ell}}^2$	$1.7 \times 10^{-5} \Delta a_L^\ell$	$\frac{m_em_{\mu}}{2}$			
$ (\delta^e_{13})_{RR} $	$3 \times 10^{-1} \ \tilde{m}_{\tilde{\ell}}^2$	$5.9 \times 10^{-2} \Delta a_R^e$	$ m_{ au}^2 $			
$ (\delta_{13}^e)_{LR} $	$1.7 \times 10^{-2} \ \tilde{m}_{\tilde{\ell}}^2$	$\sim 3 \times 10^{-7} \tilde{m}_{\tilde{\ell}}^{-1}$				
$ (\delta^e_{23})_{LL} $	$2 \times 10^{-2} \ \tilde{m}_{\tilde{\ell}}^2$	$8.4 \times 10^{-8} \Delta a_L^\ell$				
$ (\delta^e_{23})_{RR} $	$3 \times 10^{-1} \ \tilde{m}_{\tilde{\ell}}^2$	$1.4 \times 10^{-6} \Delta a_R^e$				
$ (\delta^e_{23})_{LR} $	$1 \times 10^{-2} \tilde{m}_{\tilde{\ell}}^2$	$\sim 2 \times 10^{-9} \tilde{m}_{\tilde{\ell}}^{-1}$				
$ (\delta^e_{23})_{LL}(\delta^e_{13})_{LL} $	$1 \times 10^{-4} \ \tilde{m}_{\tilde{\ell}}^2$	$1.4 \times 10^{-12} (\Delta a_L^{\ell})^2$				
$ (\delta^{e}_{23})_{RR}(\delta^{e}_{13})_{RR} $	$9 \times 10^{-4} \ \tilde{m}_{\tilde{\ell}}^2$	$8.4 \times 10^{-8} (\Delta a_R^e)^2$				
$ (\delta^{e}_{23})_{LL}(\delta^{e}_{13})_{RR} $	$2 \times 10^{-5} \tilde{m}_{\tilde{\ell}}^2$	$5.0 \times 10^{-9} \Delta a_L^\ell \Delta a_R^e$				
$ (\delta^{e}_{23})_{RR}(\delta^{e}_{13})_{LL} $	$2 \times 10^{-5} \tilde{m}_{\tilde{\ell}}^2$	$2.4 \times 10^{-11} \Delta a_L^\ell \Delta a_R^e$				
(Gbbiani et al, Abel, Khalil + Lebedev, Endo, Kakizaki +Yamaguchi,						
TT^{*} C1 · · TT^{*}) 32						

Hisano + Shimizu; Hisano.....)

Kobayashi, JK+Terao, `03; Itou,Kajiyama+JK, `05

		Exp. bound	Q_6 Model
	$\sqrt{ \mathrm{Re}(\delta_{12}^d)^2_{LL,RR} }$	$4.0 \times 10^{-2} \ \tilde{m}_{\tilde{q}}$	$(LL)1.2 \times 10^{-4} \Delta a_L^q, (RR)1.7 \times 10^{-1} \Delta a_R^d$
1	$\left \operatorname{Re}(\delta_{12}^d)_{LL}(\delta_{12}^d)_{RR} \right $	$2.8 \times 10^{-3} \tilde{m}_{\tilde{q}}$	$4.5 \times 10^{-3} \sqrt{\Delta a_L^q \Delta a_R^d}$
	$\sqrt{ \mathrm{Re}(\delta_{12}^d)_{LR}^2 }$	$4.4 \times 10^{-3} \tilde{m}_{\tilde{q}}$	$\sim 2 \times 10^{-5} \tilde{m}_{\tilde{q}}^{-1}$
	$\sqrt{ \mathrm{Re}(\delta_{13}^d)^2_{LL,RR} }$	$9.8 \times 10^{-2} \tilde{m}_{\tilde{q}}$	$(LL)7.8 \times 10^{-3} \Delta a_L^q, (RR)1.4 \times 10^{-1} \Delta a_R^d$
1	$\left \operatorname{Re}(\delta_{13}^d)_{LL}(\delta_{13}^d)_{RR} \right $	$1.8 \times 10^{-2} \tilde{m}_{\tilde{q}}$	$3.4 \times 10^{-2} \sqrt{\Delta a_L^q \Delta a_R^d}$
	$\sqrt{ \mathrm{Re}(\delta_{13}^d)_{LR}^2 }$	$3.3 \times 10^{-2} \tilde{m}_{\tilde{q}}$	$\sim 2 \times 10^{-5} \tilde{m}_{\tilde{q}}^{-1}$
	$\sqrt{ \mathrm{Re}(\delta_{12}^u)_{LL,RR}^2 }$	$1.0 \times 10^{-1} \tilde{m}_{\tilde{q}}$	$(LL)1.0 \times 10^{-4} \Delta a_L^q, (RR)4.5 \times 10^{-4} \Delta a_R^u$
1	$\left \operatorname{Re}(\delta_{12}^u)_{LL}(\delta_{12}^u)_{RR} \right $	$1.7 \times 10^{-2} \ \tilde{m}_{\tilde{q}}$	$2.1 \times 10^{-4} \sqrt{\Delta a_L^q \Delta a_R^u}$
	$\sqrt{ \mathrm{Re}(\delta_{12}^u)_{LR}^2 }$	$3.1 \times 10^{-2} \tilde{m}_{\tilde{q}}$	$\sim 7 \times 10^{-5} \tilde{m}_{\tilde{q}}^{-1}$
	$ (\delta^d_{23})_{LL,RR} $	$\sim 10^{-1} \tilde{m}_{\tilde{q}}$	$(LL)1.5 \times 10^{-2} \Delta a_L^q, (RR)4.7 \times 10^{-1} \Delta a_R^d$
	$ (\delta^d_{23})_{LR} $	$1.6 \times 10^{-2} \ \tilde{m}_{\tilde{q}}^2$	$\sim 5 \times 10^{-5} \tilde{m}_{\tilde{q}}^{-1}$

Flavor symmetry with spontaneous CP suppress FCNCs and CP too much!!

Can one get a large *CP* in the B⁰ mixing?

$$i\frac{d}{dt} \left(\begin{array}{c} |B_q^0(t) > \\ |\bar{B}_q^0(t) > \end{array} \right) = (\mathbf{M} - i\mathbf{\Gamma}) \left(\begin{array}{c} |B_q^0(t) > \\ |\bar{B}_q^0(t) > \end{array} \right) \quad q = d, s$$

Lenz-Nierste parameterization of NP

$$M_{12}^q = M_{12}^{SM,q} \cdot \Delta_q \qquad \Delta_q = |\Delta_q| e^{i\phi_q^{\Delta}}$$

$$\Gamma_{12}^q = \Gamma_{12}^{SM,q} \qquad \phi_q = \arg\left(-M_{12}^q/\Gamma_{12}^q\right)$$

Master equations for observables

$$\Delta M_q = 2|M_{12}^{SM,q}| \cdot |\Delta_q|, \ \Delta \Gamma_q = 2|\Gamma_{12}^q| \cos\left(\phi_q^{SM} + \phi_q^{\Delta}\right)$$
$$a_{sl}^q = \frac{|\Gamma_{12}^q|}{|M_{12}^{SM,q}|} \cdot \frac{\sin\left(\phi_q^{SM} + \phi_q^{\Delta}\right)}{|\Delta_q|}$$

I: Tree-level Higgs contribution

I+II

Yukawa couplings for neutral Higgses are real even for the mass eigen states.

II: Contributions from the soft mass insertions

 $(\delta_{ij})_{LL,RR}$ is real, and $(\delta_{ij})_{LR} \sim A \text{ tems} + \mu \text{ tems}$ $b \rightarrow s\gamma$ $b \rightarrow s\gamma$

36

 $-0.023 \lesssim \phi_s^{\Delta} \lesssim 0.009$

Kawashima, JK and Lenz, PLB681,60 (2009)

D0+CDF: $A_{sl}^{\ b} = -(8.5 \pm 2.8) \cdot 10^{-3}$

Danke schön.