Observational Cosmology

- a laboratory for fundamental physics

MPI-K, Heidelberg 24.11.2011 Marek Kowalski

- Introduction
- Cosmological probes
- Cosmological constraints

Observation:The Universe is ExpandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}} \qquad \left| \frac{1}{H^{2}} \right|^{2}$$

$$\Omega_M + \Omega_\Lambda + \Omega_k = 1$$

Observation:The Universe is ExpandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}} \qquad \left| \frac{1}{H^{2}} \right|^{2}$$

$$\Omega_{M} + \Omega_{\Lambda} + \Omega_{k} = 1$$
 Matter Density

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}} \qquad \left| \frac{1}{H^{2}} \right|^{2}$$

$$\Omega_{M} + \Omega_{\Lambda} + \Omega_{k} = 1$$
Matter Density
Cosmological Constant/ Dark
Energy

Observation:The Universe is expandingPrinciples:Homogeneous, isotropicTheory:General Relativity

$$H^{2} = \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi G}{3}\rho_{M} + \frac{\Lambda}{3} - \frac{k}{R^{2}} \qquad \left| \frac{1}{H^{2}} \right|^{2}$$

1998: Discovery of Dark Energy

Nobel prize for physics 2011

Nobel prize for physics 2011

The standard model of cosmology: ACDM

Ingredients of ΛCDM:

- Cosmological constant
- Cold Dark Matter
- Baryons
- 3 light neutrino flavors
- Ampl. of primord. fluctuations
- Index of power spectrum

The standard model of cosmology: ACDM

Beyond the standard model:

- Non-Λ dark energy
- Hot dark matter,
 e.g. massive neutrinos
- Additional relativistic species,
 e.g extra neutrino species
- Tensor perturbations
 & running spectral index
 ⇒ physics of Inflation

Cosmological Probes: Selected new results

Cosmic Microwave Background

New ground based data from: South Pole Telescope (SPT) & Atacama Cosmology Telescope (ACT)

Observational cosmology - Kowalski

WMAP

Cosmic Microwave Background

Galaxy Clusters

Picture credit: ESA

First science results of Planck (A&A, 2011)

SNe la Hubble Diagram

SNe la Hubble Diagram

SNe at large Redshifts (z>1)

SN 1997cj

Twin Keck telescopes on Mauna Kea.

HST Survey of Clusters with $z \ge 1$

Cycle 14, 219 orbits (PI S. Perlmutter) 24 clusters from RCS, RDCS, IRAC, XMM

Survey of z>0.9 galaxy clusters
⇒ SNe from cluster & field
⇒ about 2 x more efficient
⇒ enhencement of early hosts
⇒ 20 new HST SNe
⇒ 10 high quality z>1 SNe!

Supernova Cosmology Project Suzuki et al., 2011

HST Survey of Clusters with $z \ge 1$

HST Survey of Clusters with $z \ge 1$

Baryon Acoustic Oscillation

Acoustic "oscillation" lengh scale from CMB visible in the distribution of galaxies \Rightarrow Standard ruler of cosmology.

Baryon Acoustic Oscillation

Acoustic "oscillation" lengh scale from CMB visible in the distribution of galaxies \Rightarrow Standard ruler of cosmology.

WiggleZ survey – Blake et al, 2011

Baryon Acoustic Oscillation

Acoustic "oscillation" lengh scale from CMB visible in the distribution of galaxies \Rightarrow Standard ruler of cosmology.

Cosmological Constraints: Selected new results

ΛCDM

SNe (Union 2.1, Suzuki et. al, 2011) BAO (Percival et. al, 2010) CMB (WMAP-7 year data, 2010)

$$\Omega_{\Lambda} = 0.729 \pm 0.014$$

and allowing for curvature:

 $\Omega_k = 0.002 \pm 0.005$

Fundamental Problems of Vacuum Energy/Cosmological Constant:

Dark Energy

Equation of state: *p=wp*

Constant w: *w*=-0.995±0.078

Dark Energy

Equation of state: *p=wp*

Constant w: *w*=-0.951±0.078

Redshift dependent w: $w(a)=w_0+(1-a) \ge w_a$ $W_a = 0.14\pm0.68$

No deviation from w=-1 (i.e. Λ)

Redshift dependent EOS

Constraints on Inflation parameters

e.g. Chaotic Inflation (Linde, 1983)

 $V(\phi) = \lambda \phi^{p}$

Power spectrum of curvature perturbations

 $\Delta_R^2(k) \propto \left(\frac{k}{k_0}\right)^{n_s - 1}$

Constraints on Inflation parameters

e.g. Chaotic Inflation (Linde, 1983)

$$V(\phi) = \lambda \phi^p$$

Power spectrum of curvature perturbations

$$\Delta_R^2(k) \propto \left(\frac{k}{k_0}\right)^{n_s - 1}$$

Scalar spectral index $n_s = 0.966 \pm 0.011$ Tensor-to-scalar ratio r < 0.21

SPT+ WMAP7 (Keisler et al. 2011)

Observational cosmology - Kowalski

Number of relativistic species (neutrinos!)

Observational cosmology - Kowalski

Neutrino mass from CMB & large scale structure

Damping of correlation power due to free streaming at epoch of radiation-matter equality:

$$\left(\frac{\Delta P}{P}\right) \approx -0.8 \left(\frac{\sum m_v}{1 \text{ eV}}\right) \left(\frac{0.1}{\Omega_{\text{m}}h^2}\right)$$

Combination of CMB+BAO+H₀:

$$\sum m_{v} < 0.5 \text{ eV} (95\% \text{CL})$$

e.g. Komatsu et al (2010)

Similar mass bounds also for LSND-like sterile neutrinos

Hamann et al (2010)

- Cosmology today is about precision
- Multiple probes for highest sensitivity
- ΛCDM looks strong so far despite interpretational problems with dark energy
- Many new surveys committed, hence significant progress expected!

Vikhlini et al. ApJ, 2009

Upcoming surveys: eROSITA, DES, ...

Assuming step-wise constant w:

