Why flavor matters at the LHC Recent developments and prospects in flavor physics

Jernej F. Kamenik

Institut "Jožef Stefan"

07/01/2012, Heidelberg

SM phenomenologically very successful theory

Strong theoretical arguments to consider it as effective theory "Flavor physics"

one of arguments tokey tool to investigate NPconsider SM not completebeyond SM

$$\mathcal{L}_{\nu \rm SM} = \mathcal{L}_{\rm gauge}(A_a, \psi_i) + D_{\mu} \phi^{\dagger} D^{\mu} \phi - V_{\rm eff}(\phi, A_a, \psi_i)$$

 $V_{\text{eff}} = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + \underbrace{Y^{ij}}_{\uparrow} \psi^i_L \psi^j_R \phi + \underbrace{(y^{ij})}_{\Lambda} \psi^{iT}_L \psi^j_L \phi^T \phi + \dots$ flavor content of model

Introduction

$$V_{\text{eff}} = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 + Y^{ij} \psi_L^i \psi_R^j \phi + \frac{y^{ij}}{\Lambda} \psi_L^{iT} \psi_L^j \phi^T \phi + \dots$$

Beside direct searches for new d.o.f's at high energy colliders, main task is to understand/constrain size of <u>additional terms in</u> <u>series</u>

Higgs & Flavor physics

Given good agreement with SM predictions - NP may exhibit considerable mass gap

Indirect searches of NP crucial - require high precision

hierarchical

The quark Yukawa sector of SM is very particular

 $\lambda \approx 0.22$: Cabibbo angle

aligned

"SM flavor puzzle"

 Y^{u} , Y^{d} only source of global flavor symmetry breaking:

$$G_F = SU(3)_Q \times SU(3)_U \times SU(3)_D$$

10 physical parameters:

- 6 quark masses
- 3 CKM mixing angles
- 1 CP odd phase

Determine all flavor phenomena in quark sector!

Severe constraints on NP sources of flavor

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)}$$

Isidori, Nir & Perez, 1002.0900

Operator	Bounds on Λ in TeV $(c_{ij} = 1)$		Bounds on c_{ij} ($\Lambda = 1$ TeV)		Observables
$(\Delta F = 2)$	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	$1.5 imes 10^4$	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	$5.1 imes 10^2$	$9.3 imes 10^2$	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes 10^3$	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1.1×10^{2}		$7.6 imes 10^{-5}$		Δm_{B_s}
$(\bar{b}_R s_L) (\bar{b}_L s_R)$	$3.7 imes10^2$		1.3×10^{-5}		Δm_{B_s}

"NP flavor puzzle"

Severe constraints on NP sources of flavor

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)}$$

NP at TeV scale has to be approximately flavor "aligned" with SM breaking

maximal alignment - Minimal Flavor Violation (Y^u, Y^d remain only sources) d'Ambrosio et al., hep-ph/0207036

$$\mathcal{J}^{NP}_{\mu} = X_{ij} \bar{Q}^i \gamma_{\mu} Q^j , \quad X_{ij} = a_0 \mathbf{1} + a_1 Y^{u\dagger} Y^u + a_2 Y^{d\dagger} Y^d + \dots$$

even in MFV, bounds on NP scale O (few TeV)!

Hurth, Isidori, J.F.K. & Mescia, 0807.5039 UTFit, 0707.0636

"NP flavor puzzle"

$B_{s,d} \rightarrow \mu^+ \mu^-$ status and prospects

$B_{s,d} \rightarrow \mu^+ \mu^-$ status and prospects

These modes are unique source of information about flavor physics beyond SM:

- theoretically very clean (virtually no long-distance contributions)
- particularly sensitive to FCNC scalar currents and FCNC Z penguins

(gaugeless limit - good approx. to full SM amplitude)

Clean probe of the Yukawa interaction (→ Higgs sector) beyond tree level

$B_s \rightarrow \mu^+ \mu^-$ recent developments

Updated SM prediction taking into account leading NLO EW (+ full NLO QCD)

Buras et al., 1208.0934

$$\mathcal{B}_{s,\text{SM}}^{(0)} = 3.2348 \times 10^{-9} \times \left(\frac{M_t}{173.2 \text{ GeV}}\right)^{3.07} \left(\frac{f_{B_s}}{227 \text{ MeV}}\right)^2 \left(\frac{\tau_{B_s}}{1.466 \text{ ps}}\right) \left|\frac{V_{tb}^* V_{ts}}{4.05 \times 10^{-2}}\right|^2$$

~3% theory error.

systematic continuos improvement of f_{Bs} on Lattice (currently ~4%)

+ Correction factors in relating theory to experimentally accessible rate

- Photon-energy cut $\rightarrow \sim -10\%$ (already included in exp. eff.)
- $\Delta \Gamma_s \neq 0$ $\rightarrow ~ +10\%$ (not yet included in exp. results)

$$\overline{\mathcal{B}}_{s,SM} = (3.54 \pm 0.3) \times 10^{-9}$$
 $\overline{\mathcal{B}}_{s}^{(\exp)} = (3.2^{+1.5}_{-1.2}) \times 10^{-9}$ LHCb,1211.2674
At this stage there is perfect compatibility...

$B_s \rightarrow \mu^+ \mu^-$ recent developments

...and good agreement with SM has important implications:

Example: Constraints on the structure of the A-terms in SUSY models

Leading contrib. in SM

Possible O(\pm 30%) corrections to Br for $m_{tR} < 0.5$ TeV

LR mixing term still largely unknown ($m_h \sim 125 \text{ GeV} \rightarrow \text{large A}_{33}$)

Measurement with $\sigma(Br) \sim 30\%$ provides first relevant constraint on such couplings below stability bounds ($|A_{33} A_{32}| < 3 m_{tL}^2$) for $m_{tL} < 1$ TeV

Year ago LHCb reported first evidence of CP violation in charm system, evidence soon after confirmed by CDF & Belle

$$\Delta a_{CP}^{\rm World} = -(0.68 \pm 0.15)\% \qquad (\sim 4.3\sigma \text{ from 0})$$

Unambiguous evidence for direct CPV

$$\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to f)$$

 $a_f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(D^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to f)} \,.$

 $\Delta a_{CP} \equiv a_{K^+K^-} - a_{\pi^+\pi^-}$

<u>Totally unexpected:</u> before LHCb result DCPV in charm above 0.1% often quoted as "clear signal of NP"...

Observed Δa_{CP} is large compared to "natural" SM expectation

$$\mathcal{H}_{|\Delta c|=1}^{\text{eff}} = \lambda_d \mathcal{H}_{|\Delta c|=1}^d + \lambda_s \mathcal{H}_{|\Delta c|=1}^s \quad \lambda_q \equiv V_{cq}^* V_{uq}$$

Observed Δa_{CP} is large compared to "natural" SM expectation

Observed Δa_{CP} is large compared to "natural" SM expectation

 $\Delta R_{SM} > 1$ is not what we expect for $m_c >> \Lambda_{QCD}$, but is not impossible treating charm quark as light: possible connection with the $\Delta I = 1/2$ rule in Kaons

> Golden & Grinstein Phys. Lett. B 222 (1989) Brod, Kagan & Zupan 1111.5000 Brod, Grossman, Kagan & Zupan 1203.6659

Observed Δa_{CP} is large compared to "natural" SM expectation

...but not large enough, compared to SM uncertainties, to be considered clear signal of NP

Assuming SM does not saturate exp. value parametrize NP contributions normalized to effective SM scale

$$\begin{split} \Delta a_{CP} &\approx (0.13\%) \mathrm{Im}(\Delta R^{\mathrm{SM}}) + 9 \sum_{i} \mathrm{Im}(C_{i}^{\mathrm{NP}}) \mathrm{Im}(\Delta R_{i}^{\mathrm{NP}}) \\ \text{for } \mathrm{Im}(C_{i}^{\mathrm{NP}}) &= \frac{v^{2}}{\Lambda^{2}} : \quad \frac{(10 \text{ TeV})^{2}}{\Lambda^{2}} = \frac{(0.61 \pm 0.17) - 0.12 \,\mathrm{Im}(\Delta R^{\mathrm{SM}})}{\mathrm{Im}(\Delta R^{\mathrm{NP}})} \end{split}$$

Are such contributions allowed by other flavor constraints?

In EFT can be estimated via "weak mixing" of operators

Important constraints on most operators from D- \overline{D} mixing and direct CPV in $K^0 \rightarrow \pi^+ \pi^-$ (ϵ'/ϵ)

CPV chromo-magnetic operators only weakly constrained by EDMs

- Strict bounds from D meson mixing naturally satisfied
- Easily generated in various well-motivated models (SUSY, warped extra-dim.,...)

Giudice, Isidori & Paradisi,1201.6204 Keren-Zur et al., 1205.5803 Delaunay, J.F.K., Perez & Randall, 1207.0474

Isidori, J.F.K, Ligeti & Perez

Key question: how to distinguish NP vs. SM explanations?

NP explanation via chromo-magnetic operators:

Unavoidable large CPV also in the electric-dipole operators (model-independent connection via QCD)

Isidori & J.F.K., 1205.3164 Lyon & Zwicky, 1210.6546 Fajfer & Kosnik, 1208.0759

<u>CPV in radiative D decays</u> $(D \rightarrow (P^+P^-)_V \gamma; \text{ also } D \rightarrow (P^+P^-)_V l^+l^-)$

CPV asymmetries above 3% would be a clear sign of NP in dipole operators

Neutron EDM and LFV in charged leptons are also expected to be close to present bounds, but connection is more model-dependent

Given good consistency of global CKM fits, CPV in B_s mixing predicted precisely in SM

... except persistent A_{sl} anomaly

$$A = (-0.787 \pm 0.172 \pm 0.093)\%$$

dimuon charge asymmetry by D0

If due to CPV in B_{s,d} mixing $A_{sl}^{b} = f_{d}a_{sl}^{d} + f_{s}a_{sl}^{s}$ $\uparrow \qquad \uparrow \qquad \uparrow$ production (fragmentation) fractions $\Gamma(\bar{D} = -Y)$

$$a_{sl}^q = \frac{\Gamma(B_q \to \mu^+ X) - \Gamma(B_q \to \mu^- X)}{\Gamma(\bar{B}_q \to \mu^+ X) + \Gamma(B_q \to \mu^- X)}$$

SM prediction: $A_{\rm sl}^{b,\rm SM} = -(0.20 \pm 0.03) \times 10^{-3}$

0.02 هر 🛛

If A would be due to NP phase in B_s mixing: in conflict with measured ϕ_s (similarly for B_d mixing)

Additional possibilities: 1. <u>NP in absorptive amplitudes</u>

- in B_s system conflict with $\Delta\Gamma$, Δm_s
- in B_d system severe constraints from $\Delta F=1$, possibility remains

If A would be due to NP phase in B_s mixing: in conflict with measured ϕ_s (similarly for B_d mixing)

Additional possibilities:
1. <u>NP in absorptive amplitudes</u>
2. <u>NP in direct CP asymmetries</u>
(in semileptonic B_q or D_q decays)

- in B_q decays need O(0.1%) asym.
- in D_q decays need O(1%) asym.

Difficult to obtain in NP models

Violation of lepton flavor universality in B decays

In SM weak charged current interactions are lepton flavor universal

• Tested directly at colliders via W decays ~1%

Additional charged (scalar) interactions could induce LFU violation in processes at low energies

Can be predicted accurately even in hadronic processes, since most QCD uncertainties cancel in ratios

- Pion, kaon, D processes well consistent with LFU expectations ~(0.1-1)%
- In B sector tests only became feasible recently at B-factories...

c.f. HFAG, 1010.1589

BaBar, 1205.5442

HFAG Belle, ICHEP2012

$$\mathcal{R}^{\pi}_{\tau/\ell} \equiv \frac{\tau(B^0)}{\tau(B^-)} \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu})}{\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu})} \qquad \qquad b \to u \tau \nu$$

BaBar, 1205.5442

HFAG Belle, ICHEP2012

$$\Delta \mathcal{R}^{\pi}_{\tau/\ell} \equiv \frac{\tau(B^0)}{\tau(B^-)} \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu})}{\Delta \mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu})} \qquad b \to u \tau \nu$$

$$16 \text{ GeV}^2 < q^2 < 26.4 \text{ GeV}^2$$

General requirements in EFT:

- no tree-level down quark / charged lepton FCNCs
- no LFU violations in pion, kaon sectors
- A number of possibilities:

require flavor alignment

Fajfer, J.F.K., Nisandzic & Zupan, 1206.1872

modification of left-hand current - preferred in MFV Predict monotop signature at LHC Andrea et al., 1106.6199 J.F.K. & Zupan, 1107.0623

chirality flipping scalar operators - require non-MFV see also Crivellin, Greub & Kokulu 1206.2634 severe bounds from FCNCs

Conclusions

Success of SM in describing flavor-changing processes implies that large new sources of flavor symmetry breaking at TeV scale are excluded.

However, there are sectors of the theory that are just starting to be tested

- Measurement of $B_{s,d} \rightarrow \mu^+\mu^-$ probes the Higgs Yukawa sector at loop level
- If due to NP, observed Δa_{CP} points towards new flavor sources in u_R sector - interesting implications for radiative charm decays
- D0 A_s measurement inconsistent with LHCb measured CPV in B_s mixing
 implications for (direct) semileptonic B (and D) asymmetries
- If confirmed, observed LFU violations in *B* decays point towards new charged current interactions of 3rd gen. matter fields
 - interesting top, tau physics at LHC

Backup

CPV in $|\Delta c|=2$

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

$$m \equiv \frac{m_1 + m_2}{2}, \qquad \qquad \Gamma \equiv \frac{\Gamma_1 + \Gamma_2}{2},$$
$$x \equiv \frac{m_2 - m_1}{\Gamma}, \qquad \qquad y \equiv \frac{\Gamma_2 - \Gamma_1}{2\Gamma}.$$

• Experimentally accessible mixing quantities:

• x,y (CP conserving) Cannot be estimated accurately within SM NP contributions are predictable

flavor specific time-dependent CPV decay asymmetries [sensitive to q/p]

$$a_f(t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)},$$

CPV in $|\Delta c|=2$

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

CPV in $|\Delta c|=2$

• CPV in Mixing $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

