Supersymmetric Seesaws

M. Hirsch

mahirsch@ific.uv.es

Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain

Thanks to: J. Esteves, S. Kaneko, W. Porod, L. Reichert,

J. Romao, F. Staub, A. Vicente and A. Villanova

The seesaw mechanism

Supersymmetric seesaw

Supersymmetric seesaw

\mathcal{I} . Introduction

 \mathcal{II} . Supersymmetric seesaws

$\mathcal{III}.$ LFV in seesaw

$\mathcal{I}\mathcal{V}.$ SUSY spectra and the seesaw scale

Introduction

MPI-K, Heidelberg, 17/12/2010 - p.5/53

Neutrino oscillation data

Neutrino masses are non-zero:

Parameter	Best fit	3σ c.l.
Δm_\odot^2 ($10^{-5}~{ m eV^2}$)	$7.59\substack{+0.23 \\ -0.18}$	7.03 - 8.27
$\Delta m^2_{ m Atm}$ (10 $^{-3}~ m eV^2$)	$2.40^{+0.12}_{-0.11}$	2.07 - 2.75
$\sin^2 heta_{\odot}$	$0.318\substack{+0.019\\-0.016}$	0.27 - 0.38
$\sin^2 heta_{ m Atm}$	$0.50\substack{+0.07 \\ -0.06}$	0.36 - 0.67
$\sin^2 heta_{13}$	$0.013\substack{+0.013 \\ -0.009}$	≤ 0.053

Data from updated global fit:

Schwetz, Tórtola & Valle, New J Phys 10:113011, 2008; arXiv:0808.2016 (hep-ph) updated V3: 11 Feb 2010

Hint for no-zero θ_{13} at 1.5 σ ? - Fogli et al., 2008

Very good first approximation to this data is the so-called tri-bimaximal mixing ansatz of Harrison, Perkins and Scott, PL**B530**:

$$\mathcal{U}_{\nu}^{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Corresponding to

$$\tan^2 \theta_{\rm Atm} = 1$$
 , $\tan^2 \theta_{\odot} = \frac{1}{2}$, $\sin^2 \theta_{\rm R} = 0$

Absolute mass scale

Tritium decay end point searches:

$$m_{\nu}^{\beta} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2} \le 2.2 \text{ eV}$$

Double beta decay:

Majorana neutrino!

$$m_{\nu}^{\beta\beta} = \sum_{i} U_{ei}^2 m_i \le (0.5 - 1.0) \text{ eV}$$

Cosmology (CMB + LSS + \cdots):

$$\sum_{i} m_{\nu_i} \le (0.4 - 1.0) \text{ eV}$$

 \Rightarrow Recall for hierarchical neutrinos:

$$\sqrt{\Delta m^2_{
m Atm}}\sim 50~{
m meV}$$
 and $\sqrt{\Delta m^2_\odot}\sim 9~{
m meV}$

If Lepton Number is Violated:

Weinberg, 1979
$$m_{\nu} = \frac{1}{\mathcal{M}_{LNV}}(LH)(LH)$$

Many possible models:

(i) Seesaw mechanism: Type-I, Type-II, Type-III, Inverse seesaw, etc ...
(ii) Radiative models: Zee, Babu, LQs ...
(iii) SUSY neutrino masses: Rp
(iv) ···

If Lepton Number is Violated:

Weinberg, 1979 $m_{\nu} = \frac{1}{\mathcal{M}_{LNV}}(LH)(LH)$

E. Ma, PRL81, 1998:

At tree level only three realizations of seesaw operator

Many possible models:

(i) Seesaw mechanism: Type-I, Type-II, Type-III, Inverse seesaw, etc ...
(ii) Radiative models: Zee, Babu, LQs ...
(iii) SUSY neutrino masses: Rp

(iv) · · ·

`Classical' Seesaw

In the basis (ν_L , ν_R) write mass matrix:

$$\mathcal{M}_{
u} = \left(egin{array}{cc} 0 & m_D \ m_D & M_M \end{array}
ight)$$

Minkowski, 1977 Yanagida, 1979 Gell-Mann, Ramond & Slansky, 1979 Mohapatra & Senjanovic, 1980

If $m_D \ll M_M$:

$$m_{1/2} \simeq (-rac{m_D^2}{M_M}, M_M)$$

⇒ For 3 ν_R 21 parameters ⇒ At low energy12 parameters measurable: 3 m_{l_i} , 3 m_{ν_i} , 3 angles & 3 phases ⇒ Predictive power: -9

Santamaria, 1993

Schechter & Valle, 1980, 1982 Cheng & Li, 1980 Mohapatra, Senjanovic, 1981

with:

 $m_M \simeq Y^{\nu} \langle \Delta_L^0 \rangle$

 $\mathcal{M}_{\nu} = m_M$

Example: SU(5) with **15**:

$$\langle \Delta_L^0
angle \sim rac{\langle h^0
angle^2}{m_{15}}$$

- \Rightarrow With 2 triplets (SUSY) 15 parameters
- \Rightarrow Predictive power (low energy): -3

...

Seesaw: Type-III

As in seesaw type-I. Replace ν_R by $\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$. In the basis (ν_L, Σ^0) write mass matrix:

$$\mathcal{M}_{
u} = \left(egin{array}{cc} 0 & m_D \ m_D & M_\Sigma \end{array}
ight)$$

R. Foot et al., 1988 E. Ma, 1998

If $m_D \ll M_\Sigma$:

$$m_{1/2}\simeq(-rac{m_D^2}{M_{\Sigma}},M_{\Sigma})$$

 $\Rightarrow For 3 \Sigma 21 parameters \\\Rightarrow Predictive power: -9$

Supersymmetric seesaws

MPI-K, Heidelberg, 17/12/2010 - p.13/53

The Setup @ GUT scale

• Type-I

$$W_{\rm RHN} = \mathbf{Y}_N^{\rm I} \ N^c \cdot \mathbf{\bar{5}} \cdot \mathbf{5}_H + \frac{1}{2} \ M_R \ N^c N^c$$

$$W_{15H} = \frac{1}{\sqrt{2}} \mathbf{Y}_{N}^{II} \, \overline{5} \cdot \mathbf{15} \cdot \overline{5} + \frac{1}{\sqrt{2}} \lambda_{1} \overline{5}_{H} \cdot \mathbf{15} \cdot \overline{5}_{H} + \frac{1}{\sqrt{2}} \lambda_{2} 5_{H} \cdot \overline{\mathbf{15}} \cdot 5_{H} + \mathbf{Y}_{5} \mathbf{10} \cdot \overline{5} \cdot \overline{5}_{H} + \mathbf{Y}_{10} \mathbf{10} \cdot \mathbf{10} \cdot 5_{H} + M_{15} \mathbf{15} \cdot \overline{\mathbf{15}} + M_{5} \overline{5}_{H} \cdot 5_{H}$$

• Type-III

$$W_{24M} = \sqrt{2} \mathbf{Y_5} \mathbf{\bar{5}} \cdot 10 \cdot \mathbf{\bar{5}}_H - \frac{1}{4} \mathbf{Y_{10}} 10 \cdot 10 \cdot \mathbf{5}_H + \mathbf{Y}_N^{III} \mathbf{5}_H \cdot \mathbf{24}_M \cdot \mathbf{\bar{5}}$$

 $+ \frac{1}{2} \mathbf{24}_M M_{24} \mathbf{24}_M$

The SU(5)-broken phase

Under $SU(3) \times SU_L(2) \times U(1)_Y$

• The $\overline{5}$ contains:

$$\overline{\mathbf{5}} = (d^c, \mathbf{L})$$

• The 15 decomposes as
$${f 15}_H=S(6,1,-rac{2}{3})+T(1,3,1)+Z(3,2,rac{1}{6})$$

• The 24 decomposes as

$$24_M = W_M(1,3,0) + B_M(1,1,0) + \overline{X}_M(3,2,-\frac{5}{6}) + X_M(\bar{3},2,\frac{5}{6}) + G_M(8,1,0)$$

Gauge coupling unification

In the MSSM (nearly) perfect unification of gauge couplings

 \Rightarrow Evolution of inverse of gauge couplings $\alpha_i = \frac{g_i^2}{4\pi}$:

 \Rightarrow Note change in slope at Q = 1TeV

Gauge coupling unification

Adding a (pair of) triplet fields T and \overline{T} at any $Q \stackrel{<}{\sim} (\text{few}) \ 10^{15} \text{ GeV}$ destroys unification of gauge couplings

Gauge coupling unification

Adding complete SU(5) multiplets changes $\alpha(M_{GUT})$, but maintains unification of gauge couplings

- \Rightarrow Note change in $\alpha(m_{GUT})$
- \Rightarrow Note change in slope at $Q=10^{12}~{\rm GeV}$

Landau poles

Seesaw type-II Seesaw type-III

Perturbativity of $\alpha(M_{GUT})$ gives lower limit for M_{Seesaw}

 \Rightarrow dashed lines: 1-loop; full lines: full 2-loop RGEs

mSugra

Boundary conditions: mSUGRA ("minimal Supergravity"):

$$\begin{split} M_1 &= M_2 = M_3 = M_{1/2}, \\ m_{H_u}^2 &= m_{H_d}^2 = m_0^2, \\ M_{\tilde{Q}}^2 &= M_{\tilde{U}}^2 = M_{\tilde{D}}^2 = M_{\tilde{L}}^2 = M_{\tilde{E}}^2 = m_0^2 1_3, \\ A_d &= A_0 Y_d, A_u = A_0 Y_u, A_e = A_0 Y_e. \end{split}$$

- \Rightarrow # of parameters: $4\frac{1}{2}$ (m_0 , $M_{1/2}$, A_0 , $\tan\beta$, $sgn(\mu)$)
- \Rightarrow Sometimes also called the CMSSM (C = constrained)
- \Rightarrow All low energy masses can then be calculated by RGE ("renormalization group equations")
- \Rightarrow No neutrino masses and no LFV

 \Rightarrow More complicated SUSY breaking schemes could be studied, however need: $\Lambda_{SUSY} > M_{\rm Seesaw}$

V_{soft} & the seesaw-ll scale

RGEs allow to calculate low-scale SUSY masses. Example, only rough estimate:

$$m_{\tilde{L}}^2 \simeq m_0^2 + 0.5 M_{1/2}^2$$
$$m_{\tilde{E}}^2 \simeq m_0^2 + 0.15 M_{1/2}^2$$
$$M_1 \simeq 0.45 M_{1/2}$$

Form "invariants":

$$(m_{\tilde{L}}^2 - m_{\tilde{E}}^2)/M_1^2 \simeq 1.7$$
 Murayama, 2006

- \Rightarrow Different "invariants" can be defined
- \Rightarrow To first approximation no dependence on m_0 and $M_{1/2}$
- ⇒ Departure from mSugra expecation contains info on high energy physics!

Buckley &

Seesaw & running of $V_{\rm soft}$

Just one example (full => type-I; dotted => type-II; dash-dotted => type-III):

- \Rightarrow Gaugino mass parameters run faster then sfermion masses
- \Rightarrow type-III changes faster than type-II; type-I: no change

Soft masses and seesaw-ll

Four examples of "invariants" as function of $M_{15} = M_T$:

 $\Rightarrow \text{Consistent departures from mSugra point to } M_T$ $\Rightarrow \text{Dependence on } M_T \text{ only } \log(M_T)$

Compare type-II and type-III

Four examples of "invariants" as function of $M_{15} = M_{24}$:

Analytic 1-loop leading-log approximation

 $\Rightarrow \text{Type-III seesaw ``invariants'' run faster} \\\Rightarrow \text{Dependence on } M_{\text{Seesaw}} \text{ only } \log(M_{\text{Seesaw}})$

Soft masses and seesaw-ll

- $\Rightarrow "Invariant" (m_{\tilde{L}}^2 m_{\tilde{E}}^2)/M_1^2, \text{ calculated with } Y_T \simeq 0$ $\Rightarrow "Analytic": \text{Leading-log 1-loop}$
- \Rightarrow 1-loop and 2-loop: numerical calculation

III.

LFV & SUSY Seesaw

Lepton flavour violation

Decay	Current	Future (?)	
$ au o \mu \gamma$	$6.8 \cdot 10^{-8}$	$\sim 10^{-8}$	
$ au ightarrow e\gamma$	$1.1 \cdot 10^{-7}$	$\sim 10^{-8}$	
$\mu ightarrow e \gamma$	$1.2 \cdot 10^{-11}$	$\sim 10^{-13}$	
$ au o 3\mu$	$1.9 \cdot 10^{-7}$	$\sim 10^{-8}$	
$\tau^- \to e^- \mu^+ \mu^-$	$2 \cdot 10^{-7}$	$\sim 10^{-8}$	
$\tau^- \to e^+ \mu^- \mu^-$	$1.3 \cdot 10^{-7}$	$\sim 10^{-8}$	
$\tau^- ightarrow \mu^- e^+ e^-$	$1.9 \cdot 10^{-7}$	$\sim 10^{-8}$	
$\tau^- ightarrow \mu^+ e^- e^-$	$1.1 \cdot 10^{-7}$	$\sim 10^{-8}$	
$\tau \to 3e$	$1.1 \cdot 10^{-7}$	$\sim 10^{-8}$	
$\mu ightarrow 3e$	$1 \cdot 10^{-12}$	$\sim 10^{-13}$	

PDG 2006

In the SM:

all $Br \equiv 0!$

In SM + Seesaw I: unmeasurably small:

$$\operatorname{Br}(\mu \to e\gamma) \stackrel{<}{\sim} 10^{-40}$$

mSugra and RGEs

Seesaw type-I:

Borzumati & Masiero, 1986

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} f(m_0, A_0, M_{1/2}, ...) (Y_{\nu}^{\dagger} L Y_{\nu})_{ij}$$

Note: $L_i = \log[M_G/M_i]$.

 \Rightarrow 9 new independent parameters

Seesaw type-II:

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} g(m_0, A_0, M_{1/2}, ...) (Y_T^{\dagger} Y_T)_{ij} \log(M_G/M_T)$$

 \Rightarrow 9+12=21, but only 15 (14) parameters

 \Rightarrow Measuring all entries in $(\Delta M_{\tilde{L}}^2)_{ij}$ "over-constrains" type-II seesaw ???

Note: type-III equation as type-I, but larger LFV ... see below

$\mu \rightarrow e \gamma$ in mSugra sessaw

 \Rightarrow The three different seesaws are: type-III, type-II and type-I

- \Rightarrow General expectation: "Large" LFV for "large" $M_{\rm Seesaw}$
- \Rightarrow General expectation LFV in type-III \gg type-I

Type-I and type-III only

Note: This example as function of s_{13} , but cancellations independent of any low-energy neutrino physics can be found in fine-tuned portions of parameter space

> No prediction of LFV possible, but: Observation of LFV => constraints on RH sector

Collider versus low energy

Soft SUSY breaking:

$$V = (m_{\tilde{L}}^2)_{ij} \tilde{L}_i^* \tilde{L}_j + \cdots$$

Off-diagonal elements induce decays:

Slepton decays and $l_i \rightarrow l_j \gamma$ related:

Hinchliffe and Page, 2001 Porod and Majerotto, 2002 ... many others ...

MPI-K, Heidelberg, 17/12/2010 - p.32/53

 \Rightarrow LHC can see LFV (if SPS3-like ...)

Numerical results: LHC

Seesaw-I:

Left: SPS1a'

Right: SPS3

(Small detour)

SUSY Left-right symmetric model

Consider gauge group:

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Advantages:

- Restoration of parity at high energy
- . Generates seesaw: N^c is part of theory
- . Provides (potentially) solution to CP problems
- Can be embedded in SO(10)
- . *R*-parity conservation can be automatic

LFV in SUSY LR model

 \Rightarrow As in seesaw Br($\mu^+ \rightarrow e^+ \gamma$) strong function of $M_{\rm Seesaw}$... but ...

LFV in SUSY LR model

Asymmetry:

$$\mathcal{A}(\mu^+ \to e^+ \gamma) = \frac{|A_L|^2 - |A_R|^2}{|A_L|^2 + |A_R|^2},$$

 \Rightarrow Note: In mSugra seesaw $\mathcal{A} = 1$ always

MPI-K, Heidelberg, 17/12/2010 - p.36/53

SUSY spectra & seesaw scale

MPI-K, Heidelberg, 17/12/2010 - p.37/53

SUSY mass spectra

LHC observables - I

- \Rightarrow In R_P SUSY LHC does not measure SUSY masses directly
- \Rightarrow Consider, for example, decay chain:

$$\begin{split} \tilde{q}_L &\to \chi_2^0 + q & \text{Bachacou, Hinchliffe} \\ &\to \chi_2^0 \to l + \tilde{l} \to l^\pm + l^\mp + \chi_1^0 & \text{Bachacou, Hinchliffe} \\ \end{split}$$

 \Rightarrow Signal: Two opposite sign leptons + jets + missing energy

 \Rightarrow 5 independent kinematical variables:

 $(m_{ll})^{edge}$, $(m_{lq})^{edge}_{low}$, $(m_{lq})^{edge}_{high}$, $(m_{llq})_{edge}$ and $(m_{llq})_{thresh}$

 \Rightarrow ... but only 4 unknown masses involved!

LHC observables - II

Variable	Value (GeV)	Error (GeV)
m_{ll}^{max}	77.07	0.08
m_{llq}^{max}	428.5	4.5
m_{lq}^{low}	300.3	3.1
m_{lq}^{high}	378.0	3.9
m_{llq}^{min}	201.9	2.6
m_{llb}^{min}	183.1	4.1
$m(\tilde{l}_L) - m(LSP)$	106.1	1.6
$m_{ll}^{max}(\chi_4^0)$	280.9	2.3
$m_{ au au}^{max}$	80.6	5.1
$m(\tilde{g}) - 0.99 \times m(LSP)$	500.0	6.4
$m(\tilde{q}_R) - m(LSP)$	424.2	10.9
$m(ilde{g})-m(ilde{b}_1)$	103.3	1.8
$m(ilde{g})-m(ilde{b}_2)$	70.6	2.6

G. Weiglein et al. Phys. Rep. 426

Values correspond to: mSugra point SPS1a

LHC observables - III

LHC & ILC combined

Particle	Mass	"LHC"	"ILC″	"LHC+ILC"
h^0	116.0	0.25	0.05	0.05
H^0	425.0		1.5	1.5
$ ilde{\chi}_1^0$	97.7	4.8	0.05	0.05
$ ilde{\chi}_2^0$	183.9	4.7	1.2	0.08
$ ilde{\chi}_4^0$	413.9	5.1	3 - 5	2.5
$\tilde{\chi}_1^{\pm}$	183.7		0.55	0.55
$ ilde{e}_R$	125.3	4.8	0.05	0.05
${ ilde e}_L$	189.9	5.0	0.18	0.18
$ ilde{ au}_1$	107.9	5 - 8	0.24	0.24
$ ilde q_R$	547.2	7 - 12	—	5 - 11
${ ilde q}_L$	564.7	8.7	—	4.9
${ ilde t}_1$	366.5		1.9	1.9
${ ilde b}_1$	506.3	7.5	—	5.7
\tilde{g}	607.1	8.0	_	6.5

Aguilar-Saavedra, et al. Eur. Phys. J. **C46**

Values correspond to: mSugra point SPS1a'

Results ILC+LHC

Seesaw type-II

Seesaw II (m_0 : 70, $M_{1/2}$: 400, $\tan\beta$: 10, A_0 : -300)

Seesaw II (m_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300) 420 410 400 400 390 380 370 10^{12} 10^{13} 10^{14} 10^{15} $\log(m_{SS})$ [GeV] Note:

(i) $m_{SS} + \Delta(m_{SS}) = M_{GUT}$ at around $m_{SS} \sim 10^{15}~{\rm GeV}$ l σ c.l.

(ii) $\Delta(m_{SS})$ strongly dependent on m_{SS}

Results ILC+LHC

Seesaw type-III

Seesaw III (m_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300)

Seesaw III ($m_0: 70, M_{1/2}: 400, \tan\beta: 10, A_0: -300$)

 $\begin{array}{c} 475 \\ 450 \\ 425 \\ 400 \\ 375 \\ 350 \\ 325 \\ 10^{14} \\ 10^{15} \\ 10^{16}$

Note:

(i) change in scale: m_{SS}

(ii) $m_{SS} + \Delta(m_{SS}) = M_{GUT}$ at $m_{SS} \sim (6-7) \times 10^{15}$ GeV 1 σ c.l.

(iii) $\Delta(m_{SS})$ strongly dependent on m_{SS}

Results LHC only

Seesaw type-II

Seesaw II ($m_0: 120, M_{1/2}: 720, \tan\beta: 10, A_0: 0$)

Seesaw II (m_0 : 120, $M_{1/2}$: 720, $\tan\beta$: 10, A_0 : 0)

Note:

(i) $m_{SS} + \Delta(m_{SS}) = M_{GUT}$ at around $m_{SS} \sim 10^{14}~{\rm GeV}$ l σ c.l.

(ii) All error bars much larger than for LHC + ILC

Results LHC only

Seesaw type-III

Note:

(i) $m_{SS} + \Delta(m_{SS}) = M_{GUT}$ at $m_{SS} \sim 5 \times 10^{14} \ {\rm GeV}$ $1 \sigma \text{ c.l.}$

(ii) All error bars much larger than for LHC + ILC

Results LHC only

- \Rightarrow As function of m_{SS} mass ordering changed!
- \Rightarrow "Edge variables" crucial for LHC

Fitting mSugra with seesaw

Seesaw II ($m_0: 70, M_{1/2}: 250, \tan\beta: 10, A_0: -300$)

Seesaw III ($m_0: 70, M_{1/2}: 250, \tan\beta: 10, A_0: -300$)

Seesaw III ($m_0: 70, M_{1/2}: 250, \tan\beta: 10, A_0: -300$)

MPI-K, Heidelberg, 17/12/2010 - p.48/53

ILC errors & observables

- \Rightarrow Switching off artificially different observables
- \Rightarrow left-slepton mass measurement most important
- \Rightarrow for $m_{SS}{\stackrel{<}{\sim}}10^{14}$ measuring χ^0_1 + \tilde{l}_R "sufficient"

LHC errors & observables

Seesaw II (m_0 : 70, $M_{1/2}$: 400, tan β : 10, A_0 : -300)

- \Rightarrow Switching off artificially different observables
- \Rightarrow "Edges" at LHC most important

 \Rightarrow Accurate $m_{\tilde{g}} - m_{\tilde{b}_1}$ brings significant improvement

Conclusions

Conclusions

Backup slides

Make forecast of expected sensitivity of mass measurements to M_{Seesaw} with:

- \Rightarrow For any set of mSugra + seesaw parameters calculate observables
- \Rightarrow Assume *relative errors* as in study points
- \Rightarrow Calculate χ^2 distribution, varying 5 parameters
- $\Rightarrow \Delta \chi^2 \sim 5.9$ approximately expected 1 σ c.l. errors on parameters
- \Rightarrow type-II seesaw with one pair of $15,\,\overline{15}$
- \Rightarrow type-II seesaw 3 copies of 24_M
- \Rightarrow All calculations using 2-loop RGEs (SPheno)
- \Rightarrow Two "data sets": (i) LHC+ILC and (ii) LHC only