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The 3 basic seesaw models 

i.e. tree level ways to generate the dim 5 operator
! masses beyond the SM : tree level

Fermionic Singlet 

Seesaw ( or type I)

2 x 2 = 1 + 3

! masses beyond the SM : tree level

Fermionic Triplet 

Seesaw ( or type III)

2 x 2 = 1 + 3

! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

Right-handed singlet:
(type-I seesaw)

Scalar triplet:
(type-II seesaw)

Fermion triplet:
(type-III seesaw)
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Dimension 5 operator

there is only one:

Majorana 

L ! λ

M
(LLHH)

! masses beyond the SM

 Favorite options: new physics at higher scale M 

Heavy fields manifest in the low energy effective theory (SM)

via higher dimensional operators

Dimension 5 operator:

It’s unique ! very special role of ! masses:

lowest-order effect of higher energy physics
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! masses beyond the SM

 Favorite options: new physics at higher scale M 

Heavy fields manifest in the low energy effective theory (SM)

via higher dimensional operators

Dimension 5 operator:

It’s unique ! very special role of ! masses:

lowest-order effect of higher energy physics
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                         Type-III seesaw Lagrangian

kinetic term: interactions with W and Z bosons

Majorana mass term 

hyperchargeless triplet(s) of fermions: 

Yukawa interactions 

L = LSM + Tr[Σi/DΣ]− 1
2
Tr[ΣMΣΣc + ΣcM∗

ΣΣ]− φ̃†Σ
√

2YΣL + h.c.

Σ =
(

Σ0/
√

2 Σ+

Σ− −Σ0/
√

2

)
Σ+,Σ0,Σ−



Neutrino masses 
! masses beyond the SM : tree level

Fermionic Triplet 

Seesaw ( or type III)

2 x 2 = 1 + 3

mν = Y T
Σ

1
MΣ

YΣv2

     (     for neutrino masses is just 
     like a right-handed neutrino) 

Σ0



Main differences between type-I and type-III models

triplets unlike N singlets:

                        have gauge interactions:  

(much easier to see than mi-
   xing of neutral neutrino states)

                   induce mixing of the charged leptons 
                        with new physics states:               mixing                                                                     

•  

•  

Σ̄−Σ−Z , Σ̄+Σ+Z , Σ̄0Σ+W− , Σ̄0Σ−W+

(+h.c.)

L ! vYΣΣ+l−

Σ+c − l−

production at 
colliders and 
rare decays



Testing the type-III seesaw models

                        production at colliders  

rare leptonic decays•  

•  

                        up to   

                        at LHC for       up to     ∼ 1.5 TeVMΣ

MΣ ∼ 200 TeV



Rare leptonic processes

examples:

                        generates flavour violating vertices in the mass eigenstates basis:   

              and                 mixings of                              Σ0 − ν Σ+c − l−

Z0

+
+

µ

e

µ
Σ−

Z0

µ
e

    to calculate them one first needs to diagonalize the mass matrix of 
       charged and neutral leptons non-diagonal due to Yukawa interactions

L ! vYΣΣ+l− + vYΣΣ0ν + MΣΣ̄Σ

O
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)

∝ v2
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    (or if                                        )

µ→ eee

Z0

µ
e

e

e

Br(µ→ eee) =
(v2

2
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Σ

1
M†

ΣMΣ

YΣ

)2

eµ
·

(3 sin4 θW − 2 sin2 θW + 1/2)

(v2

2
Y †

Σ

1
M†

ΣMΣ
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)

eµ
< 1.1 · 10−6

Br(µ→ eee)exp < 1.0 · 10−12

YΣ <∼ 10−2 ·
( MΣ

1 TeV
)

YΣ ! 1 : MΣ > 170 GeV

                                 better than in the type-I model where this process can be induced
                           only at one-loop level (because no charged lepton mixing)  



µ→ eγ

Br(µ→ eγ) =
3
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Figure 1: Diagrams contributing to µ → eγ. φ±, η are the three Goldstone boson
associated with the W− and Z bosons. H stands for the physical Higgs boson.

3 µ → eγ and τ → lγ decays

In the following we perform the calculation of the µ → eγ rate. The τ decay rates
will be obtained straightforwardly from it later on. As it is well-known, the on-shell
transition µ → eγ is a magnetic transition so that its amplitude can be written, in the
me → 0 limit, as :

T (µ → eγ) = A × ue (p − q)
[

iqνελσλν (1 + γ5)
]

uµ (p) , (26)

with ε the polarization of the photon, pµ the momentum of the incoming muon, qµ the
momentum of the outgoing photon and σµν = i

2
[γµ, γν ]. Using the Gordon decompo-

sition we can rewrite it as

T (µ → eγ) = A × ue (p − q) (1 + γ5) (2p · ε − mµε/)uµ (p) . (27)

In the following we will calculate only the p · ε terms. The terms proportional to ε/ can
be recovered from the p · ε terms through Eq. (27). All in all, this gives:

Γ(µ → eγ) =
m3

µ

4π
|A|2 . (28)

µ → eγ amplitude and decay rate

In the mass eigenstate basis, from the Lagrangian of Eqs. (13)-(16), there are four-
teen diagrams contributing to µ → eγ, as shown in Fig. 1. The detailed calculation is
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µ→ e conversion in atomic nuclei

Z0

µ
e

N

N

                        same vertex as for µ→ eee

                        in          gives:  Rµ→e
48
22Ti

v2

2

(
Y †

Σ

1
M†

ΣMΣ

YΣ

)

eµ
< 1.7 · 10−7



Summary of constraints

Constraints on Process Bound

|εeµ| µ− → e+e−e− < 1.1 · 10−6

|εeτ | τ− → e+e−e− < 1.2 · 10−3

|εµτ | τ− → µ+µ−µ− < 1.2 · 10−3

|ετe| τ− → µ+µ−e− < 1.6 · 10−3

|ετµ||εeµ| τ− → e+µ−µ− < 3.1 · 10−4

|ετµ| τ− → e+e−µ− < 1.5 · 10−3

|ετe||εµe| τ− → µ+e−e− < 2.9 · 10−4

|εeµ| µ→ eγ < 1.1 · 10−4

|εµτ | τ → µγ < 1.5 · 10−2

|εeτ | τ → eγ < 2.4 · 10−2

|εeµ| Rµ→e < 1.7 · 10−7

Table 8: Constraints on εαβ from charged leptons decays.

This Lagrangian, in which the charged components of the triplets are expressed in terms
of 2-component fields, is not convenient when considering mixing with the charged
leptons, which as usual are expressed in 4-component notation. As the charged triplet
components have 4 degrees of freedom they can all be written in terms of a 4-component
unique Dirac spinor,

Ψ ≡ Σ+c
R + Σ−R . (117)

The neutral fermionic triplet components on the other hand can be left in 2-component
notation, since they have only two degrees of freedom and mix with the neutrinos, which
are also described by 2-component fields. This leads to the Lagrangian

L = Ψi∂/Ψ + Σ0
Ri∂/Σ0

R −ΨMΣΨ−
(

Σ0
R

MΣ

2
Σ0c

R + h.c.

)

+ g
(
W+

µ Σ0
RγµPRΨ + W+

µ Σ0c
R γµPLΨ + h.c.

)
− g W 3

µΨγµΨ

−
(
φ0Σ0

RYΣνL +
√

2φ0ΨYΣlL + φ+Σ0
RYΣlL −

√
2φ+νL

cY T
Σ Ψ + h.c.

)
. (118)

The mass term of the charged sector shows then the usual aspect for Dirac particles
(omitting flavor indices):

L % −(lR ΨR)

(
ml 0
YΣv MΣ

) (
lL
ΨL

)
− (lL ΨL)

(
ml Y †

Σv
0 MΣ

) (
lR
ΨR

)
, (119)

36

εαβ =
(v2

2
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1
M†

ΣMΣ

YΣ

)

αβ

transitions, respectively. U0νν is the unitary matrix which diagonalizes the neutral
lepton mass matrix for the fields (νL, Σ0c), see Appendix B for details. Using these
results, and Eq. (66) the branching ratio for the l1 → l2γ transition is given by (at
order 1/M2

Σ):

BR (l1 → l2γ) =
3

32

α

π

∣∣∣C εΣ
21 +

∑
i xνi (U0νν )2i

(
(U0νν )

†
)

i1
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2

(NN †)11(NN †)22
(122)

The experimental bounds on these processes result in constraints given in Table 8.
These are comparable to those stemming from tree-level purely leptonic decays.

4.3.7 Combination of all constraints

From all constraints obtained above we have performed a global fit, and the following
bounds on the NN † elements have been derived, at the 90% CL:

|ε| ≈




1.001 ± 0.002 < 1.7 · 10−7 < 1.2 · 10−3

< 1.1 · 10−6 1.002 ± 0.002 < 1.2 · 10−3

< 1.2 · 10−3 < 1.2 · 10−3 1.002 ± 0.002



 . (123)

Using now the relation obtained in Eq. (67) between the elements of the coefficient
matrix cd=6 and those of NN †, it follows that

v2

2
|cd=6|αβ =

v2

2
|Y †

Σ

1

M †
Σ

1

MΣ
YΣ|αβ !




3 · 10−3 < 1.7 · 10−7 < 1.2 · 10−3

< 1.1 · 10−6 4 · 10−3 < 1.2 · 10−3

< 1.2 · 10−3 < 1.2 · 10−3 4 · 10−3



 .(124)

Notice that these bounds are stronger than those obtained in the case of the fermionic
singlet Seesaw theory, Eq. (82). This is due to the fact that now flavour changing
processes with charged fermions are allowed already at tree level.

4.3.8 Signals at colliders from fermionic triplets

As for direct production and detection, alike to the case of the generic type-II Seesaw
model, the non-zero electroweak charge of the triplet results in gauge production from
photon and Z couplings. Only particles with electric charge ±1 exist in this case,
though, and the experimental signals are less clean. Anyway, if light enough, triplet
fermions can be produced in forthcoming colliders through Drell-Yan production. In
Ref. [6, 8], the following channels have been analyzed:

• Σ decays into gauge bosons plus light leptons: Σ− → Zl−, Σ− → W−ν, Σ0 → Zν,
Σ0 → W±l∓;

• Σ decays into Higgs plus light leptons: Σ− → φ0l−, Σ0 → φ0ν.
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                        combining all constraints:



Rare processes ratio predictions

µ→ eee

µ→ eγ

Rµ→e

                        all depend on the same combination  v
2

2

(
Y †

Σ

1
M†

ΣMΣ

YΣ

)

eµ

                        predictions for the ratios  

Br(µ→ eγ) = 1.3 · 10−3 · Br(µ→ eee) = 2.4 · 10−1 · Rµ→e

                        similarly  
As a result we obtain the following fixed ratios for these branching ratios:

Br(µ→ eγ) = 1.3 · 10−3 · Br(µ→ eee) , (35)

Br(τ → µγ) = 1.3 · 10−3 · Br(τ → µµµ) = 2.1 · 10−3 · Br(τ− → e−e+µ−) , (36)

Br(τ → eγ) = 1.3 · 10−3 · Br(τ → eee) = 2.1 · 10−3 · Br(τ− → µ−µ+e−) . (37)

The ratios are much smaller than unity because l→ 3l′ is induced at tree level through
mixing of the charged leptons with the charged components of the fermion triplets
[10], while l→ l′γ is a one-loop process. The results of Eqs. (35)-(37) hold in the limit
where MΣ " MW,Z,H , as they are based on Eq. (31). Not taking this limit, i.e. using
Eq. (67) of the Appendix, for values of MΣ as low as ∼ 100 GeV, these ratios can vary
around these values by up to one order of magnitude. Numerically it turns out that
the bounds in Eqs. (32)-(34) are thus not as good as the ones coming from µ → eee,
τ → eee and τ → µµµ decays, which give |εeµ| < 1.1 · 10−6, |εµτ | < 4.9 · 10−4, |εeτ | <
5.1 · 10−4 respectively (using the experimental bounds: Br(µ → eee) < 1 · 10−12 [1],
Br(τ → eee) < 3.6 · 10−8 [14] and Br(τ → µµµ) < 3.2 · 10−8 [14]).5 This shows that
even if the upper limits on µ→ eγ and τ → lγ are improved in the future by three or
two orders of magnitude respectively, the µ→ 3e and τ → 3l will still provide the most
competitive bounds on the εαβ (α $= β). This can be clearly seen from the bounds,
Br(µ → eγ) < 10−15, Br(τ → µγ) < 4 · 10−11 and Br(τ → eγ) < 5 · 10−11, that one
obtains from Eqs. (35)-(37) using the experimental bounds on the l→ 3l′ decays.

This leads to the conclusion that the observation of one leptonic radiative decay
by upcoming experiments would basically rule out the seesaw mechanism with only
triplets of fermions, i.e. with no other source of lepton flavour changing new physics.
To our knowledge this is a unique result.

This is different from other seesaw models. For instance, in type I seesaw, for the
same reasons as for the type-III model, the ratios of Eqs. (35)-(37) are also fixed at
order 1/M2

N , but unlike for this type-III model, both processes are instead realized
at one-loop. As a result, generically, l → l′γ dominates over l → 3l′ because the
latter suffers an extra α suppression. On the other hand, in type II seesaw, no definite
predictions for these ratios can be done, because both types of decays depend on
different combinations of the parameters [10]. This stems from the fact that in the
type-II model the Yukawa coupling Y∆ couples a scalar triplet to two light fermions,
so it carries two light lepton flavour indices, instead of one in the type-I and type-III
models. As a result there are several combinations of the Yukawa couplings which can
lead to a µ-to-e transition in this model.6

5Note that these bounds from τ decays are better than the ones quoted in Table. 8 of Ref. [10], as
we have used the new experimental limits on τ → 3l decays of Ref. [14]. This also leads to the new
following bounds: |εµτ | < 5.6 · 10−4 (from Br(τ → e+e−µ−) < 2.7 · 10−8) and |εeτ | < 7.2 · 10−4 (from
Br(τ → µ+µ−e−) < 4.1 · 10−8). We thank M. Nemevšek for pointing to us the existence of Ref. [14].

6For instance the µ → 3e transition involves the combination Y∆µeY
†
∆ee while the µ → eγ involve

the combination Y∆µlY
†
∆le with l = e, µ, τ see e.g. [10].
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                        the observation of              in the near 
                            future would rule out the type-III model  

µ→ eγ



Only one dimension 6 operator in type III seesaw

 Y  Y

   M

+

2



     Do we expect the rare processes rates to 
be close to the experimental bounds??

                        e.g. no!             would require low                   and large MΣ ∼ TeV YΣ > 10−2

mν = −v2

2
Y T

Σ
1

MΣ
YΣ ∼ MeV

                        but not at all excluded:  

                        - rare processes: do not violate L:

                        - neutrino masses:  do break L: ∼ −v2

2
Y T

Σ
1

MΣ
YΣ

∼ v2

2
Y †

Σ

1
M†

ΣMΣ

YΣ

approximate L conservation framework: 

                        - first assume low                   and large Yukawas with L conservedMΣ ∼ TeV

                        large rare 
                             processes

                       mν = 0
                        - then introduce a small perturbation breaking L      mν != 0



Production at LHC

Σ̄−Σ−Z , Σ̄+Σ+Z , Σ̄0Σ+W− , Σ̄0Σ−W+                        via gauge interactions:  
(+h.c.)

qq̄ → Z → Σ+Σ−

qq̄ →W± → Σ±Σ0

e
!
e
"
at 1 TeV

N
"
N
!N

"
N
0

N
!
N
0
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!1

1
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Σ
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p
T
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1
"M

Figure 1: Left plot: total production cross section at LHC. Right plot: pT distribution.

sections, summed over initial state colors and over final state polarizations, and averaged over

initial state polarizations, are

dσ̂

dt̂
=

V 2
L + V 2

R

16πŝ2
Nc(2M

4 + ŝ2 − 4M2t̂ + 2ŝt̂ + 2t̂2), (7a)

σ̂ =
β(3− β2)

48π
Ncŝ(V

2
L + V 2

R) (7b)

where Nc = 3, β ≡
√

1− 4M2/ŝ is the N velocity (0 ≤ β ≤ 1) and

VA = 0 for qq̄ → N0N0

VA =
Qqe2

ŝ
+

gq
Ag2

2

ŝ−M2
Z

for qq̄ → N+N−

VA =
g2
2

ŝ−M2
W

δAL√
2

for ud̄→ N+N0

(8)

where gq
A = T3− s2

W Qq is the Z coupling of quark q for A = {L, R}. This result does not agree

with eq. (10) of [17]. SU(2)L invariance is restored in the limit M2 & M2
Z , and the result

2σ̂uū = 2σ̂dd̄ = σ̂ud̄ = σ̂dū agrees with [15]. The cross section e−e+ → N+N−, relevant for a

possible future collider, is found by replacing q → e in eq. (8).

Fig. 1a shows σ(pp → N0N±) and σ(pp → N+N−) as function of M at LHC, i.e. at
√

s =

14 TeV. We integrated the parton distribution functions of [18], and we checked that the result

numerically agrees with the one obtained implementing the triplet model in MadGraph [19].

This would lead to about 3 · 103 (10) pairs created at LHC for M = 250 GeV (M = 1 TeV)

for an integrated luminosity of 3/fb which should be collected at LHC in less than one year.

These numbers have to be multiplied by about 2 orders of magnitude after 5 years of data

taking. Therefore LHC should be able to produce at least a few tens of events up to masses of

M ∼ 1 TeV, or even 1.5 TeV in the long term. Fig. 1b shows the distribution in the transverse

5

                        for                       : 3000 triplet pairs for              MΣ = 250 GeV
MΣ = 1 TeV

L = 3 fb−1

                                               : 10 triplet pairs for              L = 3 fb−1

                                          
up to              
MΣ ∼ 1.5 TeV

                        to determine      , establish it is a fermion produced via gauge interaction              MΣ

                       Franceschini, TH, Strumia ‘08

                       Ma, Roy ‘02



Decays at LHC

                        necessary to establish the Yukawa interactions and their flavour structure   

Σ0 → νh

Σ0 → Zν

Σ0 →W−l+

Σ+ → l+h

Σ+ → Zl+

Σ+ →W+ν

Σ+ → Σ0π+

}
}

∝ Y 2
Σ

∝ Y 2
Σ

∝                        gauge couplings only      dominant for small Yukawa’s
                                                        in case all      become  

                                                                  (pion to soft to be observed)

                        + decay to pion (allowed because                                              ): MΣ+ −MΣ0 = 166MeV > mπ+

Σ+ Σ0

                        Bajc, Nemevsek, Senjanovic ‘07

                       Franceschini, TH, Strumia ‘08
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Figure 2: Triplet decay widths as function of the triplet mass for m̃1 = meV and mh = 115 GeV.

Notice that, while pp → N0N0 does not arise at tree level, this production channel is

effectively produced by the N± → N0π± decay because the π± are too soft to be observed.

The decay mode into pions is dominant for m̃ <∼ 3 ·10−4 eV · (100 GeV/M)2, so that the effective

production rate pp→ N0N0 is given by the sum of all cross sections in fig. 1a.

5 Signals at LHC and displaced vertices

Production of N0N± and N±N∓ and their decays give rise to a variety of possible final states.

We focus on those involving jets, that have higher rates than purely leptonic final states,

and need a discussion of Standard Model backgrounds and how they can be suppressed. In

section 5.1 we study the signal with the higher rate; lepton flavour violation (LFV) is studied in

section 5.2, and lepton number violation (LNV) in section 5.3. For simplicity in what follows we

often leave implicit that events with each particle replaced by its anti-particle are also possible:

signal and background rates are similar but not equal.

5.1 The signal with the higher rate

In view of the small fb-scale cross sections for N0, N± production, we first discuss the channel

with the relatively higher rate (for m̃1 >∼ 10−4 eV):

pp→ N+N0 → ν̄W+W±#∓ → 4 jets + missing energy + a charged lepton, all hard. (11)

7

Σ→ lh

Σ→ lZ

Σ→ lW

Σ+ → Σ0π

Σ+ → Σ0lν



L violation

                        last necessary ingredient to establish that the 
                           triplets have contributions to neutrino masses

                        requires to observe the decays of both triplets

pp→ (Σ+ → l+1 Z) + (Σ0 → l+2 W−)

                        Yukawa couplings + L-violation: neutrino masses



The signal with highest rate

pp→ (Σ+ → ν̄W+) + (Σ0 →W±l∓)→ 4 jets + l∓ + missing energy

                        100 events for                       and MΣ = 250 GeV L = 3 fb−1

                        pairs from W unlike signal       require 

                        clean because background can be distinguished kinematically 

pp→ (V → 2 jets) + (V → 2 jets) + (W− → l−ν̄)

pp→ 4 QCD jets + (W− → l−ν̄)

pp→ (t→ bW− → bl−ν̄) + (t̄→ b̄ + 2 jets)

pp→ 4 QCD jets + (Z → νν̄) + (W− → l−ν̄)

(σ ∼ fb)

(σ ∼ 17 fb)

(σ ∼ 4500 fb)

(σ ∼ 160 pb)

(σ ∼ 200 fb)

l−ν̄ mT (l−ν̄) > mW

(V = W,Z)



Lepton flavour violating signals

pp→ l1 l̄2ZZ (Z → µ+µ−, e+e−, 2 jets)

                        background under control 

pp→ l1 l̄2ZW+ (Z → µ+µ−, e+e−, 2 jets;W+ → l+ν̄, 2jets)

                       see Franceschini, TH, Strumia ‘08



Lepton number violating signals

pp → (Σ+ → l+1 Z) + (Σ0 → l+2 W−)
pp → (Σ− → l−1 Z) + (Σ0 → l−2 W+)

                        background from 

pp → V V + (W+ → l+1 ν) + (W+ → l+2 ν) (σ " 1 fb)
pp → 4 QCD jets + (W+ → l+1 ν) + (W+ → l+2 ν) (σ " 20 fb)

                            So far:              flavour structure, L violationMΣ, YΣ

but still not the absolute scale of Yukawa’s        absolute scale of mν

                        displaced vertices 



Displaced vertices

                        possible in type-III model unlike in most TeV scale new physics models 

                        2 body decays e.g. far 
                          too fast at this scale

slow decay: 

MΣ ∼ 1 TeV, mν ∼ 10−1 eV requires   YΣ >∼ 10−6

m̃ =
|YΣi|2 v2
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Figure 3: Contour-plot of triplet life-times for mh = 115 GeV.

1. For larger m̃1, one has smaller τN0 ≈ τN± : e.g. τN0 ≈ τN± ≈ 0.3 mm · (M/100 GeV)2 for

m̃1 ≈ (∆m2
atm)1/2 " 0.05 eV.

2. For smaller m̃1 one has τN0 # τN± ∼ 5 cm; N± decays predominantly to N0π± leading

to multiple displaced vertices. Unfortunately the π± produced in the N± decay are too

soft to be detected and the typical track produced by N± seems too short to be well

measured.

Fig.s 4a and b show the distribution in the secondary vertex displacement ∆ for triplets pro-

duced at LHC, after taking into account the time-dilatation effect. We see that the average

displacement perpendicular to the beam axis is 〈∆⊥〉 ≈ 0.9τ , with a minor dependence on M .

In the direction parallel to the beam axis one has 〈∆‖〉 ≈ 2.4τ at M ≈ 250 GeV and 〈∆‖〉 ≈ τ

at M = 1 TeV. Both distributions are very roughly exponentials, dN/d∆ ≈ e−∆/〈∆〉.

Capabilities of LHC detectors (ATLAS, CMS) strongly depend on the unknown flavor com-

position of the lepton coupled to N and on the displacement ∆, because decays would happen

in different parts of the apparatus. For smaller ∆, LHC detectors should allow to reconstruct

the position of the secondary vertex with an uncertainty of about 0.5 mm and 0.1 mm, in the

directions parallel and orthogonal to the beam axis respectively [21]. For larger ∆, the N0 dis-

placement can be ∆⊥ >∼ 50 cm: in such a case LHC detectors could see the muons but not elec-
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 LHC detectors: better than
in the transverse direction

0.1 mm

τΣ =
8πv2

m̃M2
Σ

= 0.3 mm ·
√

δm2
atm

m̃
·
(100 GeV

MΣ

)2

τΣ =
8π

|YΣi|2MΣ
= 0.3 mm · 10−12

|YΣi|2
· 100 GeV

MΣ



                    Determining the neutrino hierarchy from 
measuring displaced vertices

                        In full generality: m̃ > mν1

τΣ =
8πv2

m̃M2
Σ

= 0.3 mm ·
√

δm2
atm

m̃
·
(100 GeV

MΣ

)2

                                                      for example for                       if the averaged 
                                              displaced vertex is measured larger than        

MΣ = 100 GeV
0.3 mm

it means                                             hierarchical neutrino spectrum (∆m2
atm)1/2 > m̃ > mν1

∑

i

m̃i >
∑

i

|mνi |
                        Similarly if one observes several triplets one can 

                     distinguish a normal and inverted hierarchies 

•

•



! masses beyond the SM : tree level
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LEPTOGENESIS:
2 x 2 = 1 + 3

(Hambye, Li, Papucci, Notari, Strumia))

Leptogenesis in the type-III seesaw model

 TH, Lin, Notari, Papucci, Strumia ‘03

                        from triplets decays to leptons and Higgses

                                                    one important difference with type-I seesaw leptogenesis: 
gauge interactions:

                        from triplets decays to leptons and Higgses

                        put the triplets into closer thermal equilibrium

Σ

Σ

Σ

W,Z

W,Z
                       suppress the L asymmetry produced



Lower bounds on the triplet mass for leptogenesis

                        Hierarchical triplet mass spectrum:•

                                                Quasi-degenerate triplet mass spectrum•
MΣ > 1.5 · 1010 GeV

MΣ > 1.6 TeV
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Figure 2: Iso-contours of the efficiency η of thermal leptogenesis from decays of a fermion

triplet (left, type-III see-saw) and a scalar triplet (right, type-II see-saw, in the case of

equal branching ratio into leptons and into higgses). The regions shaded in green are

allowed by the model-dependent bound on the CP asymmetry generated by the neutrino

mass operator (LH)2.

where the text under each contribution to the rate indicates the corresponding annihilation

processes. Eq. (13) differs from the perturbative result of eq. (5) by an order one factor

at T <∼Mg2
2.

Fig. 1a shows our result for the adimensional combination γAe2zz3/M4, that becomes

constant in the non-relativistic limit z ≡ M/T # 1, where s-wave annihilations domi-

nate. The final baryon asymmetry roughly depends on γA at z ∼ 20: the Sommerfeld

enhancement to the s-wave contribution is more important than including p-wave and all

other L $= 0 annihilations.

Fig. 2a shows the contour plot of the efficiency η as function of M and of m̃1, which,

as usual, is the lightest triplet contribution to neutrino masses. Considering e.g. the

point M = 105 GeV and m̃1 = 10−5 eV, Sommerfeld corrections reduce the efficiency from

2.6 10−8 to 2.0 10−8.

For large enough m̃1 the decay rate γD is larger than the annihilation rate γA in the

relevant temperature range T ∼M/20, so that the efficiency η no longer depends on γA,

and gets the value typical of type-I see-saw, largely independent on M . In this region

Sommerfeld corrections, that enhance γA, do not affect the final asymmetry.
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Summary

•

•Type-III seesaw model: perfectly viable origin of neutrino masses

Rich phenomenology: - rare lepton processes

•Allow successful leptogenesis for                            (hierarchical)      

definite predictions for the ratios

e.g. expected at a very scale, but nothing forbids it around the TeV scale

µ→ eee, µ→ eγ,

µ→ e conversion, ...

(large if approximate L conservation framework)

- fully testable at LHC up to MΣ ∼ 1.5 TeV

MΣ > 1.5 · 1010 GeV
MΣ > 1.6 TeV (quasi-degenerate) 
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Figure 4: Distribution of the displacement of the secondary vertex from the interaction point.

trons and taus which need almost the full lenght of the inner detector to be properly observed;

although no dedicated studies exist, a displaced vertex could be identified if N0 → µ±W∓

happens around the first layers of the muon detector, and the W decays hadronically.

Finally, if ∆ >∼ 10 m, all the production channels of eq. (8) result in the effective production

of N0N0 plus one or two undetectable pions. The decayed N± have too a short track to be

tagged or well measured, thus they are of no help. The produced N0s escape the detector and

therefore the event has no trigger and no signature. For this reason the detection of events

with such a large ∆ seems very challenging.

This opens a plethora of scenarios. In view of the first inequality in eq. (3) (that holds with

three triplets), any observed triplet lifetime larger than 0.3 mm · (100 GeV/M)2 would imply

a small m1 < (∆m2
atm)1/2 i.e. non-degenerate neutrino spectrum. In the most optimistic cases

where all triplets (N ≡ N1 and N2, N3) have sub-TeV masses, one could infer informations

on the neutrino masses and mixings and test the consistency of the scenario via the bounds of

eq. (3). E.g. the second inequality in eq. (3) implies max(m̃1, m̃2, m̃3) ≥
∑

i mi/3 or equivalently

τmin ≡ min (τ1, τ2, τ3) ≤ 1 mm · (0.05 eV/
∑

i

mi)(100 GeV/M)2. (21)

Measuring τmin <∼ 1 mm and M ≈ 100 GeV would e.g. point to neutrinos with normal mass

hierarchy (
∑

mi ≈ 0.05 eV) since inverted mass hierarchy (
∑

mi ≈ 0.1 eV) or a quasi-degenerate

spectrum (
∑

mi > 0.15 eV) lead to a stronger upper limit on τmin. Therefore the type-III see-

saw allows to measure the couplings directly related to neutrino mass physics from displaced

vertices.
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saw allows to measure the couplings directly related to neutrino mass physics from displaced
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     Do we expect the rare processes rates to 
be close to the experimental bounds??

                        e.g. no!             would require low                   and large MΣ ∼ TeV YΣ > 10−2

mν = −v2

2
Y T

Σ
1

MΣ
YΣ ∼ MeV

                        but not at all excluded:  

                        - rare processes: do not violate L:

                        - neutrino masses:  do break L: ∼ −v2

2
Y T

Σ
1

MΣ
YΣ

∼ v2

2
Y †

Σ

1
M†

ΣMΣ

YΣ

approximate L conservation framework: 

                        - first assume low                   and large Yukawas with L conservedMΣ ∼ TeV

                        large rare 
                             processes

                       mν = 0
                        - then introduce a small perturbation breaking L      mν != 0



Dim 5 and dim 6 operator summary

 Y  Y

   M

+

2



What about the size of dim 6 effects??

             expected e.g. very suppressed:                      

             but not necessarily so: 

            -        breaks lepton number but        do not!

cd=6 ∼ Y †
N

1
M2

N

YN

cd=5 ∼ Y T
N

1
MN

YN

} cd=6 ∼
cd=5

MN
∼ mν

MN

1
v2}

∼ 10−13 (MN ∼ TeV)

YN ∼ 10−6

cd=5

cd=6

-        and        : not same Yukawa combinationcd=6

cd=5

                        there is no symmetry reasons why if          is 
      suppressed          should also be    cd=6

cd=5



                            “Direct Lepton number Violation,,

     assume a L conserving setup with not 
  too large             and large Yukawas   

 assume L is broken by a small perturbation

large

MN,∆,Σ MN,∆,Σ ∼ 100 GeV− 100 TeV

cd=6 ∼
Y 2

M2

no L violationcd=5 = mν = 0

µ

                          neutrino masses directly proport. 
                       to a small source of L violation
                     rather than inversely proport. 

to a large mass  

µ

M
mν = f(Y )

µ

M2
v2



Direct Lepton number Violation in type-II model

if              no L violation

! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

cd=5 =
Y∆µ∆

M2
∆

←
(

=
mν

v2

)
! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

! masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet 

Seesaw ( or type II)

Y †
∆

∆ cd=6 =
Y †

∆Y∆

M2
∆

                        if      large,       small       small enough neutrino 
masses with large dim 6 effects

Y∆ µ∆

µ∆ = 0

! masses beyond the SM : tree level

  

          m! ~ v2 cd=5 = v2 Y
N 
Y

N 
/M

N
     

T

Fermionic Singlet 

Seesaw ( or type I)

2 x 2 = 1 + 3

Which allows YN~1  --> M~MGut
                    

! masses beyond the SM : tree level

  

          m! ~ v2 cd=5 = v2 Y
N 
Y

N 
/M

N
     

T

Fermionic Singlet 

Seesaw ( or type I)

2 x 2 = 1 + 3

Which allows YN~1  --> M~MGut
                    



DLV in type-I (and type-III) model

example with one light neutrino and 2 N:

if      is large,        not too high:                       

INVERSE SEESAW texture

!
L
            N

1
          N

2
 

!L

N
1

N
2

* Toy: 1 light ! 

Mohapatra, Valle, Glez- Garcia
YN MN

cd=6 cd=5 = 0 (L is conserved)       large with               

INVERSE SEESAW texture

!
L
            N

1
          N

2
 

!L

N
1

N
2

* Toy: 1 light ! 

Mohapatra, Valle, Glez- Garcia

“inverse seesaw” as in 
      Gonzalez-Garcia, Valle ‘89 

           Kersten, Smirnov ’07
            Abada, Biggio, Bonnet, 

  Gavela, T.H. ‘07

L(ν) = 1, L(N1) = −1, L(N2) = 1



Phenomenology of dim 6 operators

long list of effects depending on the seesaw model:

-rare lepton decays: µ→ eγ, τ → eγ, τ → µγ, µ→ eee, τ → 3 l

-universality tests: W → lν̄, π → lν̄, τ → lνν̄, ...

-Z and W decays:

-Z invisible width: Z → νν̄

-   parameterρ

- W mass

- ........

Z → ll̄, W → lν



                          Bounds on Yukawa couplings from dim 6 operator 
 induced processes: type-II model

Scalar triplet seesaw Bounds on cd=6

Scalar triplet seesaw

Combined bounds on cd=6

           Abada, Biggio, Bonnet, 
Gavela, T.H. ‘07

         Partly from: Barger et
            al ’82; Pal ’83; Bernabeu 

       et al ’84, ‘86; Bilenky, 
        Petcov’87; Gunion et 
        al ’89, ‘06; Swartz ‘89; 

Mohapatra ’92               



                          Bounds on Yukawa couplings from dim 6 operator 
induced processes: type-I model

All in all, as of today, 

            for the Singlet-fermion Seesaws:

(NN+-1)!"=

-rare lepton decays: µ→ eγ, τ → eγ, τ → µγ, µ→ eee, τ → 3 l

-universality tests:

-Z and W decays:

-Z invisible width: Z → νν̄

           effects come mostly from the mixings between the    and
          N which induce modifications of W couplings to leptons

    and Z couplings to    (through non-unitarity effects)

ν

ν

W → lν̄

           Abada, Biggio, Bonnet, 
Gavela, T.H. ‘07

   Antusch, Biggio, Fernandez-
Martinez, Lopez-Pavon, Gavela ‘06

Z → ll̄, W → lν



3 nus +3 N DFV case

while the second case leads to:

mν = −2
mD1µ

MN1

M2
N1

M2
N1

+ m2
D1

+
µ2

MN1

MN2

MN1

(M2
N1
−m2

D1
)2

(M2
N1

+ m2
D1

)2
+ O(µ3) . (161)

Eq. (160) shows that the neutrino mass is suppressed by an extra factor µ/MN1 , so that
the smallness of neutrino masses, and the argument of no fine tuning, do not require
tiny Yukawa couplings.

As for the first term in Eq. (161), it has the standard neutrino mass form, i.e.
with 2 Dirac masses in the numerator and one Majorana mass in the denominator,
but unlike the usual Seesaw formula, it involves only the product of 2 different Dirac
masses. Therefore, if one of them is smaller than the other, e.g. µ << mD1 , a small
neutrino mass can be obtained here too with a large Yukawa coupling in mD1, and
no fine-tuning. As for the second term in Eq. (161), which involves the independent
parameter MN2 , it also leads to suppressed neutrino masses, even if MN2 largely breaks
lepton number.

Now, in the limit µ → 0 the point is that the coefficient of the d = 5 operator
vanishes but that of the d = 6 operator does not. This can be seen from the fact that
the d = 6 operator takes the form (YN)†(M−2

N )(YN), see above, and doesn’t vanish in
this limit. Eq. (10) in all cases above, with for example mD1 = Y1v ∼ v and MN1 ∼ 1
TeV, becomes simply |Y1|2/M2

N1
∼ 1/M2

N1
which is large.

The one left-handed plus two right-handed neutrino example above can be general-
ized to the 3 left-handed plus 3 right-handed neutrino above. The condition for having
vanishing neutrino masses is to start with a 6 by 6 mass matrix which has rank 3.
Assuming that all entries of the Yukawa coupling matrix are independent (i.e. barring
cancellations between the various entries), it turns out that there is only one possibility
to have large Yukawa couplings with three massless light neutrinos and three massive
right-handed neutrinos. In the basis (νe, νµ, ντ , N1, N2, N3) it is





0 0 0 c 0 0
0 0 0 d 0 0
0 0 0 e 0 0
c d e f g a
0 0 0 g b 0
0 0 0 a 0 0




, (162)

plus permutations. This matrix has the particularity that only one of the 3 right-
handed neutrinos couples to light neutrinos at leading order (just as the 1 ν plus 2 N
case above). From a simple lepton number assignment there is only one way to justify
this pattern, which gives in addition f = g = 0, i.e. by taking Lνe = Lνµ = Lντ =
LN1 = −LN3 = 1 and LN2 = 0 21, 22. The matrix of Eq. (162) can be perturbed in many

21For completeness, it can be noted that the 3 light νs plus 2 heavy N case also leads to a unique
possible texture. It corresponds to take no N3, i.e. a = 0, and requires to take b = 0 in addition. It
can be justified from a L assignment if moreover f = 0 with L = 1 for all particles except N2 which
has L = −1.

22During the completion of this work, Ref. [45] appeared, which also considers this particular texture.
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this pattern, which gives in addition f = g = 0, i.e. by taking Lνe = Lνµ = Lντ =
LN1 = −LN3 = 1 and LN2 = 0 21, 22. The matrix of Eq. (162) can be perturbed in many

21For completeness, it can be noted that the 3 light νs plus 2 heavy N case also leads to a unique
possible texture. It corresponds to take no N3, i.e. a = 0, and requires to take b = 0 in addition. It
can be justified from a L assignment if moreover f = 0 with L = 1 for all particles except N2 which
has L = −1.

22During the completion of this work, Ref. [45] appeared, which also considers this particular texture.
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Eq. (160) shows that the neutrino mass is suppressed by an extra factor µ/MN1 , so that
the smallness of neutrino masses, and the argument of no fine tuning, do not require
tiny Yukawa couplings.

As for the first term in Eq. (161), it has the standard neutrino mass form, i.e.
with 2 Dirac masses in the numerator and one Majorana mass in the denominator,
but unlike the usual Seesaw formula, it involves only the product of 2 different Dirac
masses. Therefore, if one of them is smaller than the other, e.g. µ << mD1 , a small
neutrino mass can be obtained here too with a large Yukawa coupling in mD1, and
no fine-tuning. As for the second term in Eq. (161), which involves the independent
parameter MN2 , it also leads to suppressed neutrino masses, even if MN2 largely breaks
lepton number.

Now, in the limit µ → 0 the point is that the coefficient of the d = 5 operator
vanishes but that of the d = 6 operator does not. This can be seen from the fact that
the d = 6 operator takes the form (YN)†(M−2

N )(YN), see above, and doesn’t vanish in
this limit. Eq. (10) in all cases above, with for example mD1 = Y1v ∼ v and MN1 ∼ 1
TeV, becomes simply |Y1|2/M2
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N1
which is large.
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Singlet and triplet Seesaws differ in the
    the pattern of the Z couplings



following constraints on the εαβ coefficients:3

|εeµ| =
v2

2
|Y †

Σ

1

M †
Σ

1

MΣ
YΣ|µe ! 1.1 · 10−4 (32)

|εµτ | =
v2

2
|Y †

Σ

1

M †
Σ

1

MΣ
YΣ|τµ ! 1.5 · 10−2 (33)

|εeτ | =
v2

2
|Y †

Σ

1

M †
Σ

1

MΣ
YΣ|τe ! 2.4 · 10−2 . (34)

Comparison of l→ l′γ and l→ 3l′ decays

The bounds of Eqs. (32)-(34) from l → l′γ decays turn out to be on the same
parameters ε as the ones obtained from µ→ 3e or τ → 3l decays, derived in Ref. [10].
This can be understood from the fact that, at order 1/M2

Σ, for example for µ → eγ
and µ → 3e, there is only one way to combine two Yukawa couplings and two inverse
MΣ mass matrices to induce a µ-e transition along a same fermionic line: through the
combination εeµ (i.e. the flavour structure of the µ-to-e fermionic line is the same for
both processes, it corresponds to a µ which mixes with a fermion triplet which mixes
with an electron). This can also be understood from the related fact that the number
of independent parameters contained in the coefficients of the dimension five operators
(proportional to the neutrino mass matrix) and dimension six operators (encoded in
the εαβ [10]) of the low energy theory (obtained in the limit of large fermion triplet
mass) equals the number of independent parameters of the original theory. This implies
that any physical transition studied at order 1/M2

Σ, necessarily has to be proportional
to the dimension six operator coefficients, and there is only one which gives a µ to e
transition: εeµ.

As a result we obtain the following fixed ratios for these branching ratios:

Br(µ→ eγ) = 1.3 · 10−3 · Br(µ→ eee) , (35)

Br(τ → µγ) = 1.3 · 10−3 · Br(τ → µµµ) = 2.1 · 10−3 · Br(τ− → e−e+µ−) , (36)

Br(τ → eγ) = 1.3 · 10−3 · Br(τ → eee) = 2.1 · 10−3 · Br(τ− → µ−µ+e−) . (37)

The ratios are much smaller than unity because l→ 3l′ is induced at tree level through
mixing of the charged leptons with the charged components of the fermion triplets
[10], while l→ l′γ is a one-loop process. The results of Eqs. (35)-(37) hold in the limit
where MΣ " MW,Z,H , as they are based on Eq. (31). Not taking this limit, i.e. using
Eq. (63) of the Appendix, for values of MΣ as low as ∼ 100 GeV, these ratios can vary
around these values by up to one order of magnitude. Numerically it turns out that
the bounds in Eqs. (32)-(34) are thus not as good as the ones coming from µ → eee,
τ → eee and τ → µµµ decays, which give |εeµ| < 1.1 · 10−6, |εµτ | < 2.9 · 10−4, |εeτ | <
5.1 · 10−4 respectively (using the experimental bounds: Br(µ → eee) < 1 · 10−12 [1],

3Note that these bounds show that the approximation we made in the above to work only at first
order in Y 2v2/M2

Σ is justified.
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l->l’ gamma versus l->3l’ ratios are predicted to fixed 
values in the type-III seesaw model
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l->l’ gamma: l->3l’:
Constraints on Process Bound

|(NN †)eµ| µ− → e+e−e− < 1.1 · 10−6

|(NN †)eτ | τ− → e+e−e− < 1.2 · 10−3

|(NN †)µτ | τ− → µ+µ−µ− < 1.2 · 10−3

|(NN †)τe| τ− → µ+µ−e− < 1.6 · 10−3

|(NN †)τµ||(NN †)eµ| τ− → e+µ−µ− < 3.1 · 10−4

|(NN †)τµ| τ− → e+e−µ− < 1.5 · 10−3

|(NN †)τe||(NN †)µe| τ− → µ+e−e− < 2.9 · 10−4

|(NN †)eµ| µ→ eγ 2.8 · 10−5

|(NN †)µτ | τ → µγ 5.2 · 10−3

|(NN †)eτ | τ → eγ 6.6 · 10−3

Table 8: Constraints on (NN †)αβ from charged leptons decays.

This Lagrangian, in which the charged components of the triplets are expressed in terms
of 2-component fields, is not convenient when considering mixing with the charged
leptons, which as usual are expressed in 4-component notation. As the charged triplet
components have 4 degrees of freedom they can all be written in terms of a 4-component
unique Dirac spinor,

Ψ ≡ Σ+c
R + Σ−R . (117)

The neutral fermionic triplet components on the other hand can be left in 2-component
notation, since they have only two degrees of freedom and mix with the neutrinos, which
are also described by 2-component fields. This leads to the Lagrangian

L = Ψi∂/Ψ + Σ0
Ri∂/Σ0

R −ΨMΣΨ−
(

Σ0
R

MΣ

2
Σ0c

R + h.c.

)

+ g
(
W+

µ Σ0
RγµPRΨ + W+

µ Σ0c
R γµPLΨ + h.c.

)
− g W 3

µΨγµΨ

−
(
φ0Σ0

RYΣνL +
√

2φ0ΨYΣlL + φ+Σ0
RYΣlL −

√
2φ+νL

cY T
Σ Ψ + h.c.

)
. (118)

The mass term of the charged sector shows then the usual aspect for Dirac particles
(omitting flavor indices):

L % −(lR ΨR)

(
ml 0
YΣv MΣ

) (
lL
ΨL

)
− (lL ΨL)

(
ml Y †

Σv
0 MΣ

) (
lR
ΨR

)
, (119)
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