Vortices, Superfluid turbulence & Nonthermal Fixed Points in Bose Gases

Thomas Gasenzer

Institut für Theoretische Physik Ruprecht-Karls Universität Heidelberg

Philosophenweg 16 • 69120 Heidelberg • Germany

email: t.gasenzer@uni-heidelberg.de www: www.thphys.uni-heidelberg.de/~gasenzer

Thanks & credits to...

...my work group in Heidelberg:

Sebastian Bock Sebastian Erne Martin Gärttner Roman Hennig Markus Karl Steven Mathey Boris Nowak Nikolai Philipp Maximilian Schmidt Jan Schole Dénes Sexty Martin Trappe Jan Zill

LGFG BaWue

DAAD

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

HELMHOLTZ

...my former students:

Cédric Bodet (\rightarrow NEC), Alexander Branschädel (\rightarrow KIT Karlsruhe), Stefan Keßler (\rightarrow U Erlangen), Matthias Kronenwett (\rightarrow R. Berger), **Christian Scheppach** (\rightarrow Cambridge, UK), Philipp Struck (\rightarrow Konstanz), Kristan Temme (\rightarrow Vienna)

Equilibration

Transient, metastable state e.g. Turbulence Non-thermal fixed point

Heidelberg · MPIK · Teilchentee · 28 November 2011

Thomas Gasenzer

Classical Turbulence

Kinetic energy cascade

large scales (source) \rightarrow small scales (sink)

Classical Turbulence

Lewis F. Richardson (1881-1953)

Kinetic energy cascadeLewis R
(188)large scales (source) \rightarrow small scales (sink)

"Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity." (Richardson, 1920)

Classical Turbulence

Andrey N. Kolmogorov (1903-1987)

Kinetic energy cascade(19large scales (source) \rightarrow small scales (sink)

"Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity."

(Richardson, 1920)

Kolmogorov (1941)

 $E(k) \sim k^{-5/3}$

(dynamical critical phenomenon)

Wave turbulence

Wave Turbulence – e.g. on water

Theory prediction:

 $E_{\omega} \sim \omega^{-17/6}$

[Zakharov & Filonenko (67)]

Heidelberg · MPIK · Teilchentee · 28 November 2011

Thomas Gasenzer

Imagine you had a balance equation for the radial flux

Thomas Gasenzer

Transport equation (Quantum Boltzmann eq.):

dilute Bose gas: $T_{kpqr} \equiv g = 4\pi a_0/m = const.$

Heidelberg · MPIK · Teilchentee · 28 November 2011

Radial transport equation (Quantum Boltzmann):

Stationary distribution $n(k,t) \equiv n(k)$ if $Q(k) \equiv Q$

This requires a particular scaling of $n(k) \sim k^{-\zeta}$

Wave turbulence

Stationary scaling n(k) within inertial region:

Wave turbulence in an ultracold Bose gas

Dilute ultracold Bose Gas

Gross-Pitaevskii Equation:

$$(g = 4\pi a_0/m)$$

$$i\frac{\partial\Psi(\boldsymbol{\rho},t)}{\partial t} = \left(-\frac{\nabla^2}{2} + g|\Psi(\boldsymbol{\rho},t)|^2\right)\Psi(\boldsymbol{\rho},t)$$

Momentum spectrum:

 $n(\mathbf{k}) = \langle \Psi^*(\mathbf{k})\Psi(\mathbf{k}) \rangle$

Heidelberg · MPIK · Teilchentee · 28 November 2011

J. Berges, A. Rothkopf, J. Schmidt, PRL **101** (08) 041603 C. Scheppach, J. Berges, TG PRA **81** (10) 033611

Heidelberg · MPIK · Teilchentee · 28 November 2011

J. Berges, A. Rothkopf, J. Schmidt, PRL **101** (08) 041603 C. Scheppach, J. Berges, TG PRA **81** (10) 033611

Quantum Boltzmann breaks down for large *n*, once $|T_{kpqr}|n_k \gg O(1)$

$$\begin{split} \partial_t n(k) &= -\partial_k Q(k) \sim k^{d-1} J(k) \\ &= k^{d-1} d\Omega_k \int d^d p \, d^d q \, d^d r \, |T_{\mathbf{k}\mathbf{p}\mathbf{q}\mathbf{r}}|^2 \delta(\mathbf{k} + \mathbf{p} - \mathbf{q} - \mathbf{r}) \, \delta(\omega_{\mathbf{k}} + \omega_{\mathbf{p}} - \omega_{\mathbf{q}} - \omega_{\mathbf{r}}) \\ &\quad \text{coupling mom. conservation energy conservation} \\ &\times [(n_{\mathbf{k}} + 1)(n_{\mathbf{p}} + 1)n_{\mathbf{q}}n_{\mathbf{r}} - n_{\mathbf{k}}n_{\mathbf{p}}(n_{\mathbf{q}} + 1)(n_{\mathbf{r}} + 1)] \\ &\quad \text{in-scattering rate out-scattering rate} \end{split}$$

Cured by
effective many-body T-Matrix:
$$|T|^2 = g^2 \rightarrow |T_k^{MB}|^2 \sim \frac{g^2}{1 + (gkn_k)^2}$$

Dyn. QFT: Resummed Vertex

 $p = (p_0, \mathbf{p}):$

$$J(p) := \Sigma_{ab}^{\rho}(p) F_{ba}(p) - \Sigma_{ab}^{F}(p) \rho_{ba}(p) \stackrel{!}{=} 0$$

$$\Sigma_{ab}(x,y) = \frac{1}{a}$$

Vertex bubble resummation: (e.g. 2PI to NLO in 1/N)

$$\mathbf{M} \rightarrow \mathbf{M} = \mathbf{M} + \mathbf{M} +$$

[Dynamics: J. Berges, (02); G. Aarts et al., (02); Nonthermal fixed points: J. Berges, A. Rothkopf, J. Schmidt, PRL (08)]

Heidelberg · MPIK · Teilchentee · 28 November 2011

Bose gas in d spatial dimensions $n \sim k^{-\zeta}$

J. Berges, A. Rothkopf, J. Schmidt, PRL **101** (08) 041603; J. Berges, G. Hoffmeister, NPB 813, 383 (2009) C. Scheppach, J. Berges, TG PRA **81** (10) 033611

Heidelberg · MPIK · Teilchentee · 28 November 2011

Vortices in a superfluid ultracold Bose gas

Superfluid hydro of Bose-condensed Gas

The Gross-Pitaevskii Equation,

$$(g = 4\pi a_0/m)$$

$$i\frac{\partial\Psi(\boldsymbol{\rho},t)}{\partial t} = \left(-\frac{\nabla^2}{2} + g|\Psi(\boldsymbol{\rho},t)|^2\right)\Psi(\boldsymbol{\rho},t)$$

using defs.

 $\Psi(\boldsymbol{\rho}, t) = \sqrt{n(\boldsymbol{\rho}, t)} \exp[i\varphi(\boldsymbol{\rho}, t)]$ $Q = gn \qquad \mathbf{u}(\boldsymbol{\rho}, t) = \nabla\varphi(\boldsymbol{\rho}, t)$

can be written as

$$\frac{\partial}{\partial t}n + \nabla \cdot (n\mathbf{u}) = 0$$

$$\frac{\partial}{\partial t}\mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla Q$$

Euler equation

Quantum Vortices

 $\Psi(\boldsymbol{\rho},t) = \sqrt{n(\boldsymbol{\rho},t)} \exp[i\varphi(\boldsymbol{\rho},t)]$ complex field

 $\mathbf{u}(\boldsymbol{\rho},t) = \nabla \varphi(\boldsymbol{\rho},t)$ velocity

Vortices in a Na condensate

J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ketterle 20 APRIL 2001 VOL 292 SCIENCE

Gross-Pitaevskii Simulations for an ultracold Bose gas

Movie 1: Phase evolution & Spectrum

 $\Psi(\boldsymbol{\rho},t) = \sqrt{n(\boldsymbol{\rho},t)} \exp[i\varphi(\boldsymbol{\rho},t)]$

 $n(k) = \langle \Psi^*(\mathbf{k}) \Psi(\mathbf{k}) \rangle \big|_{\text{angle average}}$

Movie by Jan Schole

Movie 2: Vortex "gas" & Spectrum

$$n(k) = \langle \Psi^*(\mathbf{k})\Psi(\mathbf{k}) \rangle \Big|_{\text{angle average}}$$

B. Nowak, D. Sexty, TG, PRB 84: 020506(R), 2011

Spectrum in 2+1 D

Cascades in 2+1 D

Interpretation: Random vortex distributions

Point vortex model

B. Nowak, J. Schole, D. Sexty, TG, arXiv:1111.61XX [cond-mat.quant-gas]

Heidelberg · MPIK · Teilchentee · 28 November 2011

Thomas Gasenzer

Point vortex model in 2+1 D

Simulations in 2+1 D

Vortex position correlations

Thomas Gasenzer

Dyn. QFT: Resummed Vertex

 $p = (p_0, \mathbf{p}):$

$$J(p) := \Sigma_{ab}^{\rho}(p) F_{ba}(p) - \Sigma_{ab}^{F}(p) \rho_{ba}(p) \stackrel{!}{=} 0$$

$$\Sigma_{ab}(x,y) = \frac{1}{a}$$

Vertex bubble resummation: (e.g. 2PI to NLO in 1/N)

$$\mathbf{M} \rightarrow \mathbf{M} = \mathbf{M} + \mathbf{M} +$$

[Dynamics: J. Berges, (02); G. Aarts et al., (02); Nonthermal fixed points: J. Berges, A. Rothkopf, J. Schmidt, PRL (08)]

Heidelberg · MPIK · Teilchentee · 28 November 2011

Dyn. QFT: Resummed Vertex

 $p = (p_0, \mathbf{p}):$

$$J(p) := \Sigma_{ab}^{\rho}(p) F_{ba}(p) - \Sigma_{ab}^{F}(p) \rho_{ba}(p) \stackrel{!}{=} 0$$

Heidelberg · MPIK · Teilchentee · 28 November 2011

Thomas Gasenzer

Movie 3: Vortex Lines in 3+1 D

$$n(k) = \langle \Psi^*(\mathbf{k})\Psi(\mathbf{k}) \rangle \Big|_{\text{angle average}}$$

3+1 D simulations

Line vortex model in 3+1 D

Simulations in 3+1 D

Decomposition of flow

Acoustic turbulence

Non-thermal fixed point

thermal equilibrium

[Fig. courtesy: J. Berges '08]

Vortex tangles in Bose Einstein Condensates

Relativistic scalar field

Strong Turbulence

Simulations of the non-linear Klein-Gordon equation, O(2) symmetry

$$(\partial_t^2 - \partial_x^2)\varphi(x, t) + \lambda\varphi^3(x, t) = 0$$

Initial condition: Highly occupied zero mode, Unoccupied modes with k>0

(video)

See also: http://www.thphys.uni-heidelberg.de/~sexty/videos

TG, B. Nowak, D. Sexty, arXiv:1108.0541 [hep-ph]

Strong Turbulence = Charge Separation

Modulus of complex field $|\phi|$ vs. mean charge distribution

TG, B. Nowak, D. Sexty, arXiv:1108.0541 [hep-ph] cf. also Tkachev, Kofman, Starobinsky, Linde (1998)

Heidelberg · MPIK · Teilchentee · 28 November 2011

Strong Turbulence = Charge Separation

Charge density distribution

VS.

power spectrum

TG, B. Nowak, D. Sexty, arXiv:1108.0541 [hep-ph]

Heidelberg · MPIK · Teilchentee · 28 November 2011

Thomas Gasenzer

Thanks & credits to...

...my work group in Heidelberg:

Boris Nowak Maximilian Schmidt Jan Schole Dénes Sexty Sebastian Erne Steven Mathey Nikolai Philipp Sebastian Bock Martin Gärttner Martin Trappe Jan Zill Roman Hennig

...my former students:

Cédric Bodet (\rightarrow NEC), Alexander Branschädel (\rightarrow KIT Karlsruhe), Stefan Keßler (\rightarrow U Erlangen), Matthias Kronenwett (\rightarrow R. Berger), Christian Scheppach (\rightarrow Cambridge, UK), Philipp Struck (\rightarrow Konstanz), Kristan Temme (\rightarrow Vienna)

DAAD

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

EMMÍ

GEMEINSCHAFT

Supplementary slides

Cascades in 2+1 D: Fluxes

Time evolution of vortex density

Decomposition of Energy

$$E_{tot} = \int \left(\frac{1}{2} |\nabla \sqrt{n}e^{-i\varphi}|^2 + \frac{1}{2}gn^2\right) d\rho$$

= $E_{kin} + E_q + E_{int}$
$$u(\rho, t) = \nabla \varphi(\rho, t)$$

$$E_{kin} = \frac{1}{2} \int |\sqrt{n}u|^2 d\rho = E_{kin}^i + E_{kin}^c$$

$$\nabla \times (\sqrt{n}u)^c = 0$$

$$\nabla \cdot (\sqrt{n}u)^i = 0$$

$$E_q = \frac{1}{2} \int (\nabla \sqrt{n})^2 d\rho$$

Thomas Gasenzer

Simulations in 2+1 D

 $E(\mathbf{k}) = \boldsymbol{\omega}(\mathbf{k})\mathbf{k}^{d-1}\mathbf{n}(\mathbf{k})$

Simulations in 2+1 D

 $E(\mathbf{k}) = \boldsymbol{\omega}(\mathbf{k})\mathbf{k}^{d-1}\mathbf{n}(\mathbf{k})$

Lewis Fry Richardson, FRS (1881-1953)

Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity.

(L.F. Richardson, The supply of energy from and to Atmospheric Eddies, 1920)

Great fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so ad infinitum. And the great fleas themselves, in turn, have greater fleas to go on; While these again have greater still, and greater still, and so on.

(Augustus de Morgan, A Budget of Paradoxes, 1872, p. 370)

So, naturalists observe, a flea Has smaller fleas that on him prey; And these have smaller still to bite 'em; And so proceed ad infinitum.

(Jonathan Swift: Poetry, a Rhapsody, 1733)

