Properties of the Higgs Boson, and its interpretation in Supersymmetry

U. Ellwanger, LPT Orsay

- The quartic Higgs self coupling and Supersymmetry
- The Next-to-Minimal Supersymmetric Standard Model
- Higgs signal rates in $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ/WW$, $H \rightarrow bb$ channels
- Additional Higgs bosons?

The quartic Higgs coupling

In the Standard Model, the "mexican hat" potential of the Higgs field $V(H) = -m^2 |H|^2 + \lambda^2 |H|^4$ allows to express the physical mass M_h of the Higgs boson in terms of the known Higgs vacuum expectation value v (given by the Z/W masses) and λ :

$$M_h^2 = 2\lambda^2 v^2$$

- \rightarrow Larger M_h corresponds to larger λ
- \longrightarrow If we would have known the coupling $\lambda,$ we could have predicted the Higgs mass M_h

Supersymmetry

— one of the possible solutions of the hierarchy problem

— contains automatically a candidate for dark matter

— leads automatically to a "grand unification" of the gauge couplings

Up to now: No sign of Susy partners ("sparticles") of the standard particles: $M_{\rm u-squark}, M_{\rm d-squark}, M_{\rm qluino} \gtrsim 1 {\rm TeV}$

But:

No sign of alternative solutions of the hierarchy problem (compositeness \rightarrow extra excited states; large extra dimensions \rightarrow Kaluza-Klein states...)

 \rightarrow The Higgs sector in Supersymmetry:

At least two Higgs doublets; the quartic Higgs self couplings are related by Supersymmetry to the electroweak gauge couplings, and to Higgshiggsino Yukawa couplings (if they exist)

MSSM:

Two SU(2) doublets H_u and H_d , but no Higgs-higgsino Yukawa coupling;

- → the quartic Higgs self couplings are given by the electroweak gauge couplings
- \rightarrow upper tree level bound on the lighter Higgs mass

 $M_h \le M_Z$

But: Supersymmetry has to be (softly) broken by scalar mass terms/ trilinear scalar interactions/gaugino mass terms of $O(M_{Susy})$ \rightarrow Radiative corrections involving scales $Q < M_{Susy}$ modify the

quartic Higgs self couplings

Dominant contributions from top quark/stop $_1$ /stop $_2$ mass splittings (with the largest couplings to the Higgs bosons)

 $\rightarrow M_h \sim 125 \text{ GeV}$ is possible, but only if M_{Susy} is large enough (in agreement with constraints from direct searches)

But: rad. corrs. $\sim M_{Susy}$ to the mass terms in the Higgs potential! $v \ll M_{Susy}$ becomes unnatural, "little fine tuning problem"

The μ problem

The Higgs fields H_u and H_d have fermionic superpartners, the charged and neutral higgsinos ψ_u and ψ_d

Not observed at LEP \rightarrow a mass term $\mu \psi_u \psi_d$ must be present

 μ appears also in the Higgs potential $\rightarrow \mu$ should be of $\mathcal{O}(M_{\text{weak}}...M_{\text{Susy}})$

But:

 μ is not a soft Susy breaking term; how can it accidentically be of $\mathcal{O}(M_{\rm weak}...M_{\rm Susy})???$

The NMSSM

How to generate fermionic mass terms?

 \rightarrow introduce a Yukawa coupling to a scalar (here: a gauge singlet S) $\frac{\lambda S \psi_u \psi_d}{\lambda S \psi_u \psi_d}$

S has automatically a vev v_s of $\mathcal{O}(M_{Susy})$

- \rightarrow generates a higgsino mass term $\mu_{eff} = \lambda v_s$ of the desired order
- \rightarrow Additional benefit: An extra quartic coupling $\lambda^2 H_u^2 H_d^2$ due to SUSY
- \rightarrow Larger mass $M_h > M_Z$ at tree level!

 $\rightarrow M_h \sim 125$ GeV does not require large (unnatural) radiative corrections!

Now: Three physical scalars, superpositions of H_u , H_d and S with vevs v_u , v_d , v_s where $v_u^2 + v_d^2 = v_{SM}^2$, but $v_u/v_d \equiv \tan\beta$ and v_s unknown

Their masses have to be obtained by diagonalising a 3×3 mass matrix, typically: a mostly SM like eigenstate h_{SM} ,

a mostly singlet like eigenstate h_s ,

a heavy Higgs H (as in the MSSM)

The tree level mass of the mostly SM like h_{SM} is $M_{h_{SM}}^2 = M_Z^2 \cos^2 2\beta + \lambda^2 (v_u^2 + v_d^2) \sin^2 2\beta \pm (. . .)$

 \pm (. . .): From mixing of the mostly SM like scalar h_{SM} with the mostly singlet like scalar h_s (dep. on unknown parameters); positive if $M_{h_s} < M_{h_{SM}}$!

The measured Higgs signal rate in $H\to\gamma\gamma$

ATLAS (in Higgs production via Vector Boson Fusion, VBF):

After combining with Higgs production in gluon fusion:

$$R_{\gamma\gamma} \equiv \frac{\text{measured signal rate}}{\text{Standard Model signal rate}} = 1.65 \pm 0.32$$

CMS $H \rightarrow \gamma \gamma$ (HIG-13-001-PAS, comb. VBF+ggF)

 \rightarrow Confirmation of the enhanced $\gamma\gamma$ rate in the cutbased analysis (r.h.s.), but not in the MVA analysis (l.h.s.)

The diphoton signal rate in the NMSSM

1) Recall:

$$BR(H \to \gamma \gamma) = \frac{\Gamma(H \to \gamma \gamma)}{\Gamma(H \to bb) + \dots}$$

 $(\Gamma(H \rightarrow bb)$ gives ~ 58% of the total width for a 125 GeV SM Higgs)

- \rightarrow Due to the mixing of H_u , H_d , S it is easily possible that, in the NMSSM, the mostly SM-like h_{SM} has
- a reduced coupling to bb, and hence a reduced width $\Gamma(h_{SM} \rightarrow bb)$ \rightarrow an enhanced $BR(h_{SM} \rightarrow \gamma\gamma)$
- nearly SM—like couplings to the top quark (whose loops induce the coupling to gluons) and to the electroweak gauge bosons
 → the production rates in gluon fusion and/or VBF are hardly reduced
- \rightarrow The diphoton signal rate is enhanced (U.E. 2010)

2) Recall: In the SM, $\Gamma(H \rightarrow \gamma \gamma)$ is induced via W-boson (and top quark) loops:

In the NMSSM, the singlet S couples to the (charged) higgsinos ψ_{H_u}, ψ_{H_d} :

 $\lambda S \psi_{H_u} \psi_{H_d}$ (recall the generation of the μ -term through v_s)

 \rightarrow If h_{SM} has a S-component, charged higgsinos contribute to the loop and to $\Gamma(h_{SM} \rightarrow \gamma \gamma)$ unless λ is small or the higgsinos are heavy

h_{SM} signal rates in other channels

(with G. Bélanger, B. Dumont, J. Gunion, S. Kraml)

 $R^{VV}(gg)$: ZZ/WW signal rate in gluon fusion (relative to the SM) Combining ATLAS + CMS: $R^{VV}(gg) \sim 0.91 \pm 0.16$

 $R^{bb}(VH)$: bb signal rate in associate production with a V = Z or W boson Combining ATLAS, CMS, Tevatron: $R_2^{bb}(VH) \sim 1.13 \pm 0.43$

Examples in the parameter space of the NMSSM with universal squark/slepton masses and gaugino masses at the GUT scale (Supergravity motivated sources of Susy breaking, with C. Hugonie)

Imposing $M_{h_{SM}} \sim 125$ GeV, good dark matter relic density The mostly SM like h_{SM} is the next-to-lightest H_2 The mostly singlet like h_s is the lightest H_1 (satisfying constraints from LEP, see later)

Studies of $R_2^{\gamma\gamma}(gg)$, $R_2^{VV}(gg)$, $R_2^{bb}(VH)$:

$R_2^{VV}(gg) \equiv R_2^{ZZ} \equiv R_2^{WW}$ against $R_2^{\gamma\gamma}(gg)$:

 $\rightarrow R_2^{\gamma\gamma}(gg)$ can be enhanced by a factor 2 (or larger); both mechanisms 1) and 2) contribute!

 \rightarrow If $R_2^{\gamma\gamma}(gg) \lesssim 2$: $R_2^{VV}(gg) \equiv R_2^{ZZ} \equiv R_2^{WW}$ is not necessarily enhanced

$R_2^{bb}(VH)$ against $R_2^{\gamma\gamma}(gg)$: In conflict with the SM-like signal rate $h_{SM} \rightarrow bb$?

→ If $R_2^{\gamma\gamma}(gg) \leq 1.5$: $R_2^{bb}(VH)$ is not necessarily reduced, the enhancement of $R_2^{\gamma\gamma}(gg)$ results from the additional higgsino loop, not from a reduction of $\Gamma(h_{SM} \rightarrow bb)$ If h_{SM} mixes strongly with another mostly singlet-like scalar: The mass of this mostly singlet-like h_s should be not too far from $M_{h_{SM}} \sim 125~{\rm GeV}$

 \rightarrow Are there hints for (at least weak bounds on) such a state?

Unfortunately: The couplings/signal rates of h_s are typically reduced relative to the ones of h_{SM} , but it can still be visible in SM Higgs search channels

If this state has a mass below 114 GeV: Study the bounds on the signal rate ξ^2 in $Z^* \rightarrow Z + h_{SM}$ at LEP:

Or: above 125 GeV? hints?

Recall: $H \rightarrow \gamma \gamma$ at CMS (1303.4571):

Additional ~ 2σ excess around $M_H \sim 136$ GeV (MVA analysis, l.h.s.) or: confirmation of the enhanced $\gamma\gamma$ rate of the 125 GeV Higgs in cutbased analysis, r.h.s.; still: ~ 1σ excess around $M_H \sim 136$ GeV

Recall: $H \rightarrow \gamma \gamma$ at ATLAS (ATLAS-CONF-2013-012):

small additional excess around $M_H \sim 137$ GeV

Tevatron $VH \rightarrow bb$ (1303.6346):

(Fits to the measured signal rate relative to the SM)

small additional excess around $M_H \sim 140$ GeV (low mass resolution)

CMS $VH \rightarrow bb$ (HIG-12-044-PAS):

small additional excess for $M_H \gtrsim 130$ GeV (low mass resolution)

Tevatron $VH \rightarrow WW$ (1303.6346):

small additional excess around $M_H \sim 140$ GeV (low mass resolution)

ATLAS $VH \rightarrow WW$ (ATLAS-CONF-2013-012):

small additional excess for $M_H \gtrsim 135$ GeV (low mass resolution)

But: only upper bounds $\leq 0.2 \times$ SM on the signal rate of an additional 137 GeV Higgs boson in $H \rightarrow ZZ$, $H \rightarrow \tau\tau$ (ATLAS, CMS)

Still: at least $6 \times (\sim 1 \sigma)$ excesses (- "look elsewhere effect") hinting for an additional ≈ 137 GeV Higgs

Possibly the h_s of the NMSSM! (G. Belanger, U.E., J.F. Gunion, Y. Jiang, S. Kraml, 1208.4952)

→ Keep on looking!

What about the "heavy" state *H* (both in the MSSM and NMSSM)?

— Nearly degenerate with a CP-odd state A and a charged Higgs H^{\pm}

— Nearly decoupled from electroweak gauge bosons Z, W, but couples to top and bottom quarks

Recall: $m_b = h_b v_d$ where v_d is unknown in Susy

- \rightarrow If v_d is small (tan $\beta = \frac{v_u}{v_d}$ large, possibly up to 60), h_b is much larger than in the SM!
- \rightarrow The couplings of H, A and H^{\pm} to b quarks can be strongly enhanced
- \rightarrow Constraints from b physics (typically: $M_{H^{\pm}} \sim M_A \gtrsim 300 \text{ GeV}$)
- \rightarrow Constraints from associate production of H, A with b quarks at the LHC (notably in the $H/A \rightarrow \tau \tau$ channel):

Constraints from CMS-PAS-HIG-12-050:

Note:

— m_h^{max} refers to a specific choice of stop masses in the MSSM

- From
$$M_{h_{SM}}^2 = M_Z^2 \cos^2 2\beta + \lambda^2 (v_u^2 + v_d^2) \sin^2 2\beta \pm ...$$

- expect large tan β in the MSSM in order to maximise cos² 2 β (no $\lambda^2(v_u^2 + v_d^2) \sin^2 2\beta$ term!)
- expect small tan $\beta \approx 2$ in the NMSSM in order to maximise sin² 2β !
- \rightarrow No constraints on the NMSSM (at present...)

Conclusions

— Given $M_{h_{SM}}\sim$ 125 GeV, the NMSSM is the most natural SUSY extension of the SM: scale invariant SUSY interactions, no need for very large top/stop mass splittings in order to explain the SM like Higgs mass, but gauge coupling unification and a good dark matter candidate as in the MSSM

— Nearly SM like Higgs signal rates are part of the parameter space of all Susy extensions of the SM, but an enhanced $\gamma\gamma$ signal rate of h_{SM} can be a hint for the NMSSM

— Additional below-the-SM signals in Higgs searches at low mass ($\lesssim 200~{\rm GeV})$ can be a hint for the NMSSM