The Dark Side of ESS Dark Matter Search with Cherenkov Telescopes

Christopher van Eldik • Max-Planck-Institut für Kernphysik • Heidelberg

VHE y-ray astronomy ... a new window to the universe

VHE y-ray astronomy ... a new window to the universe

resolve sources

VHE y-ray astronomy ... a new window to the universe

VHE γ-ray astronomy ... a new window to the universe

measure flux variability

VHE γ-ray sky in 2009 ... more than 75 sources known

VHE y-ray sky in 2009 ... more than 75 sources known

(Some) topics of VHE γ-ray astronomy

Astrophysics

- Which are the cosmic PeVatrons?
- How do they work?
- Acceleration, emission, propagation

Fundamental Physics

- Indirect Dark Matter searches
- Energy dependence of speed of light

Cosmology

- Extragalactic Background Light
 - \rightarrow star formation in the early universe
- Galaxy clusters as storehouses of cosmic rays

Windows for Astronomy

Detection Principle

Detection Principle

Detection Principle

Atmosphere

Particle Shower

~ 120 m

Cherenkov Light

- image intensity
 - → γ-ray energy
- Image form
 - → background reduction

Camera

- Image orientation
 - → γ-ray direction

Cherenkov Telescopes World Map

H.E.S.S. Details

- 4 telescopes 120 m spacing 107 m² mirror surface each
- energy threshold ~100 GeV energy resolution < 15 %
- angular resolution ~0.1° pointing accuracy < 20"
- sensitivity (5σ):
 5% of Crab in 1 h
 1% of Crab in 25 h
 HEGRA: 5% of Crab in 100 h
- 1000 h of observations / year during moonless nights

MPI Kernphysik, Heidelberg Humboldt-Univ. zu Berlin **Ruhr-Univ. Bochum** Univ. Erlangen-Nürnberg Univ. Hamburg LSW Heidelberg Univ. Tübingen Ecole Polytechnique, Palaiseau APC Paris Univ. Paris VI-VII Paris Observatory, Meudon LAPP Annecy LAOG Grenoble **LPTA Montpellier CEA Saclav CESR** Toulouse **Durham Univ.** Univ. Leeds **Dublin Inst. for Adv. Studies** Polish Academy of Sciences, Warsaw Jagiellonian Univ., Cracow **Charles Univ., Prague** Yerewan Physics Inst. Univ. Adelaide North-West Univ., Potchefstroom Univ. of Namibia, Windhoek

The H.E.S.S. Cameras

- 960 pixels (0.16° per pixel)
- 5° field of view
- sensitive photomultipliers
- fast readout and trigger electronics

Need for short exposures

...to reduce night-sky background

Background Reduction & Control

- (one of) the most critical issue for analysis
- vital for significance calculation
- vital for flux determination

2 types of background

- cosmic ray hadrons
 - produce air showers somewhat similar to gamma rays
 - about 10⁴ more hadrons than gamma rays
- cosmic ray electrons
 - showers very similar to gamma rays
 - flux suppressed at TeV energies

3 stages of reduction

- suppression at trigger level
- reduction by image shape analysis
- subtraction by background modeling

H.E.S.S. Trigger

 4x single telescope pixel threshold trigger typical rates 500-800 Hz

Muon

- multiplicity-2 system trigger typical system rate 150-250 Hz
- system trigger provides efficient background reduction and lower threshold

Energy Threshold

- 160 GeV @ zenith for standard cuts
- strong zenith angle dependence
- optical degradation is shifting up thresholds

Cosmic Rays...

...main background for Cherenkov astronomy

- Ratio γ /hadron $\approx 1/1000$
- Cuts on image parameters
 → 99.9% background reduction
- Remaining S/B ~ 1..10, depending on source strength and source size

Background Modeling

 remaining background is subtracted on statistical basis:

 $N_{excess} = N_{on} - \alpha N_{off}$

- ideally, control background is taken
 - contemporaneously
 - same position in camera
 - same sky region
 - with large event statistics
 - same image-parameter phase space
- not all criteria can be met at the same time
- favoured background model depends on type of analysis (detection, morphology, spectrum...)

Background Modeling - Ring Background -

- Off-Region: ring around On-Region
- Off-Events subtracted from On-Events
 - proper area factor
 - acceptance correction
- insensitive to linear gradients in background
- applicable all over the field of view (Sky Maps, morphology)
- not very well suited for spectra due to acceptance correction

Background Modeling - Reflected Region Background -

- Off-Region: ring of circular regions around observation position (same distance as On-Region)
- Observation position must be outside the On-Region
- no acceptance correction needed assuming radially symmetric acceptance
- insensitive to systematics of acceptance determination
- very well suited for spectra

H.E.S.S. Galactic Plane Scan

Indirect Dark Matter Searches

The Early Days...

- Large velocity dispersion among
 Coma cluster galaxies
 → Zwicky 1933
- Galactic rotation curves hard to explain with luminous matter only
 - \rightarrow Babcock 1939 (Andromeda)

... and 75 years later

- High-redshift supernova surveys
- Large-scale structure of the universe
- CMBR fluctuations
 - $\rightarrow \Lambda CDM$ Standard Model of Cosmology
 - \rightarrow need CDM for structure formation
- Dark Matter accounts for
 - 22% of energy content
 - 85% of total matter

We know that we don't know, but with great precision

Particle Dark Matter

• Almost all models extensions of the SM \rightarrow need (quasi-)stable, massive particles

Particle	Spin	Mass Scale
Axion	0	µeV - meV
Inert Higgs Doublet	0	50 GeV
Sterile Neutrino	1/2	keV
Neutralino	1/2	10 GeV – 10 TeV
Kaluza-Klein UED	1	TeV

Bergström (2009)

• Velocity-averaged annihilation cross section at the time of freeze-out (v/c $\approx 0.2 - 0.3$)

 $\langle \sigma v \rangle$ =2.8×10⁻²⁶cm³s⁻¹

• Galaxy today: v/c \approx 10⁻³ \rightarrow significant enhancement possible, especially if bound state exists

Final states

• Too many models on the market:

- \rightarrow two SM particles: e+e-, µ+µ-, τ + τ -, W+W-, bb, pp
- \rightarrow >4 SM particles: 4e, 4µ, 4τ, 4π

• Branching ratios do depend on DM particle mass

 Depends on type of process: annihilation vs. decay
 → mainly concentrate on annihilation here

 Usually continuum spectra, but line emission possible (can be loop-suppressed)

Expected Flux

 $\Phi = \int \int \int \frac{1}{2} \frac{\rho_{DM}}{M_{DM}} \frac{dN_{\gamma}}{dE_{\gamma}} \frac{1}{2} \frac{\rho_{DM}^{2}}{M_{DM}^{2}} BF \langle \sigma V \rangle \frac{dN_{\gamma}}{dE_{\gamma}} F_{\gamma} = 0$

$\mathsf{d}\mathsf{l}\mathsf{d}\Omega$

 $\langle \sigma v \rangle = 2.8 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$: cross section at freeze-out

 $\rho_{\rm DM}$ =0.3 GeV cm⁻³: local energy density

BF: boost factor (Sommerfeld, sub-structure...)

Messengers

- γ-rays, neutrinos
 - \rightarrow sensitivity drops with 1/ θ
 - \rightarrow observe spikes in DM profile
- electrons/positrons
 - \rightarrow diffusion-dominated
 - \rightarrow measure diffuse flux

Diffuse γ-rays from Inverse Compton

Galactic Dark Matter Distribution

- Form of DM halo critical for detection
 - \rightarrow e.g. large differences in density at GC, sub-structure
- More an issue for γ-rays than for electrons
- More an issue for annihilation than for decay

The Centre of the Milky Way

(Leastern

- Ale

12

Sep 1

Ser Outre

- lötsöttis

Sta

anal Research Lannadory

Bocksoning Color

(Theode

595

Throads

Store Store

Monso

C 595

The state of the s

12

214735E.192

The Centre of the Milky Way

The Centre of the Milky Way

Diffuse Emission ... enhanced cosmic ray density

Diffuse Emission ... molecular cloud association

- Lack of γ-rays for I > 1 °
- Injection of protons at GC
- Assume
 k = ~3 kpc² Myr⁻¹
 for TeV protons
 - \rightarrow injection 10⁴ years ago
- Fits age of Sgr A East

HESS J1745-290 ... not much room for Dark Matter

• radial source profile fits NFW DM at first glance, but...

HESS J1745-290 ... not much room for Dark Matter

- radial source profile fits NFW DM at first glance, but...
 ... point-like after subtraction of diffuse emission
- DM density stronger peaked than r^{-1.2} (99% CL)

HESS J1745-290 ... not much room for Dark Matter

- energy spectrum: straight powerlaw exponential cutoff: E_c > 9 TeV @ 95% CL
- curved annihilation spectra
 - + "uncomfortably large" masses in MSSM
- 10% DM contribution not ruled out
 derived limits on carls do not constrain
 - \rightarrow derived limits on $\langle \sigma v \rangle$ do not constrain models

- High mass/luminosity ratioMost extreme DM dominated environments

Sagittarius Dwarf

- Satellite galaxy in the Local Group
- 24 kpc distance, so close-by
- Several Galactic disk crossings

 → likely disrupted w/o
 large DM content
- Galaxy core is point-like for H.E.S.S.

Dec (deg

- No significant signal detected
 - $\label{eq:F} \begin{array}{l} \rightarrow \mbox{ derive flux upper limit (95\% CL):} \\ F(>250\,GeV) < 3.6 \times 10^{-12}\,cm^{-2}\,s^{-1} \\ \mbox{ or less than 56 γ-rays...} \end{array}$

Sagittarius Dwarf

- Used both NFW and "cored" profile adjusted to object parameters
- Calculate pMSSM annihilation cross section limits
- Can constrain some models depending on core profile
- WMAP compliant models still viable

Other Dwarf Galaxies

- ULs hardly constrain models
- Large uncertainty from astrophysical parameters

10⁻²³

10⁻²⁴

10⁻²⁵

10⁻²⁶

10⁻²⁷

10⁻²⁸

10⁻²⁹

10⁻³⁰

10²

- black holes of intermediate mass (100 $M_{sun} < M_{BH} < 10^6 M_{sun}$)
- may power ultra-luminous X-ray sources
- formation procedure highly debated but leads to formation of DM overdensities
- search in H.E.S.S. scan data for point-like sources

- Can calculate analytically DM profile of the "mini spike"
- expect to see DM from 50-100 IMBHs
 - for full halo coverage
 - for uniform exposure
 of 25 hours in each sky bin
- inner scan region

 -30° < I < 60°
 -3° < b < 3°
- expect to see 4.3 IMBHs for 400 hours of H.E.S.S. exposure
- 3 point-like sources detected
 all compatible with being astrophysical sources
- obtain 90% limit on $\langle \sigma v \rangle$

- Determine true H.E.S.S. sensitivity map of inner scan region
- Use 200 Monte-Carlo representations of Milky-Way halos
- Search for detections
 → expect to see 4.3 ± 2.3 mini spikes

• There is some potential to exclude single models

But large uncertainties from IMBH formation models

Electrons and Positrons

- Electrons: only small fraction of cosmic rays
- Suffer severely from synchrotron and inverse compton losses
 - \rightarrow TeV electrons must come from local sources
 - \rightarrow steep spectrum $\sim E^{-3.3}$
- Balloon/satellite data available at < 1 TeV
- Electron showers similar to gamma showers
- H.E.S.S. can measure at even higher energies
 - \rightarrow large detection area
 - \rightarrow but large backgrounds
- Gamma background
 - \rightarrow observe extragalactic fields
 - \rightarrow if any, at most 50% gamma contamination
- Cosmic Ray background
 → special rejection technique

- Electrons are isotropic
 - \rightarrow no geometric background subtraction
- Random Forest: train machine learning algorithm on shower image parameters
 → needs electron/hadron simulations
- For each shower, RF determines
 "electron likeness" parameter ζ ε [0;1]
- For ζ>0.9, total background suppression is 10⁻⁶
- Remaining background
 - \rightarrow Fit ζ -distribution with combination of electron/proton simulations
 - \rightarrow result depends on hadronic interaction model (Sybill/QGSJet)

One fit per energy band to derive electron spectrum

- Two analyses recently published:
 - high energies: 600 GeV 5 TeV (hard cuts for best reconstruction)
 - low energies: 340 GeV 700 GeV (looser cuts on intensity, 2004/2005 data only)

- Spectral index 3.9±0.1±0.3
 → steepening compared
 to GeV energies
- After energy scale uncertainty compatible with previous measurements:
 - Γ = 3.1 with cut-off at 2.1 TeV
- Existence of TeV electrons implies local electron source → PWN? DM?

Aharonian et al. 2009

- Break in spectrum: $\Gamma_1 = 3.0 \pm 0.1 \pm 0.3$ $\Gamma_2 = 4.1 \pm 0.3 \pm 0.3$ $E_B = 0.9 \pm 0.1 \text{ TeV}$
- No indication of feature similar to ATIC
- Compatible to FERMI within energy shift uncertainty

HESS, Fermi, PANELA Bergström, Edsjö, Zaharijas (2009)

- Attempt to fit electron results with DM annihilation spectra
- Relic DM density: 0.3 GeV/cm³
- Assume $<\sigma v > = 3 \cdot 10^{-26} \text{ cm}^{3}/\text{s}^{3}$
- Isothermal Galactic halo profile
- Standard electron diffusion
- GALPROP to simulate astrophysical electron background
- Use H.E.S.S. data as upper limits

- DM DM $\rightarrow e^+e^-$ gives too hard/peaked electron spectrum
- DM DM $\rightarrow \tau^+\tau^-$ gives too soft electron spectrum
- Either direct decay into muons, or via light scalar (N3, AH4) viable
- Large boost-factors needed to explain large fluxes

HESS, Fermi, PANELA Bergström, Edsjö, Zaharijas (2009)

- DM DM $\rightarrow e^+e^-$ gives too hard/peaked electron spectrum
- DM DM $\rightarrow \tau^{+}\tau^{-}$ gives too soft electron spectrum
- Either direct decay into muons, or via light scalar (N3, AH4) viable
- Large boost-factors needed to explain large fluxes

Photon and Neutrino Constraints

- γ-rays test constrain DM scenarios on sub-kpc scales
 - \rightarrow Galactic Centre
 - \rightarrow Galactic Centre diffuse
 - \rightarrow local clumps of DM (dwarf galaxies, IMBH)
 - \rightarrow sensitive to halo profile
- …and on Galactic scales

 → IC photons from DM electrons
 → do not overproduce FERMI diffuse Galactic γ-ray flux
- Neutrino bounds from Super-K Galactic Centre observations

 → constraints on μ, τ final states
 → sensitive to halo profile

DM DM $\rightarrow \mu^+\mu^-$, NFW profile

Photon and Neutrino Constraints

 10^{-20}

10-22

10-24

10-26

10²

 10^{2}

 σv in cm³/sec

DM DM $\rightarrow \mu^+\mu^-$, NFW profile

DM DM $\rightarrow \tau^+ \tau^-$, NFW profile

Photon and Neutrino Constraints

The Future: CTA

Concept

- an IACT array observatory
- an order of magnitude more sensitive than HESS: 1 mCrab

- wide energy coverage:
 O(10) GeV O(100) TeV
- possibly sites in the south and north

Consortium

- largely European
- HESS + MAGIC + many others
- 15 countries currently involved
- Currently in design phase
 - Prototype construction in 1-2 years
- High priority in European road maps:

Array Simulations

- Up to 97 telescopes
- Individual sub-arrays
- Different altitudes above sea level
- Different pixel sizes
- Different pixel technology
- Aims:
 - Physics performance
 - Cost optimisation

K. Bernlöhr

Array Simulations

- 4+85: good all-purpose instrument
- 4 big teleskopes \rightarrow low energies
- 85 small telescopes \rightarrow highest energies

Summary

- VHE γ-ray instruments reach critical sensitivity to do real astronomy
- Indirect Dark Matter searches don't constrain models yet
- H.E.S.S. Measurements do constrain models when performing global fits to all available data
- CTA will offer much deeper exposures of DM overdensities + provide better energy coverage
- Uncertainties in halo profiles remain a significant problem in this field
- Will LHC detect signature of new physics?

Thank you!